利用相位延遲改善3D音效
本文解釋了音頻串?dāng)_的產(chǎn)生原因,當(dāng)兩個(gè)揚(yáng)聲器相隔距離過近時(shí),原本應(yīng)傳輸至一只耳朵的音頻信號(hào)會(huì)進(jìn)入另一只耳朵。文中闡述了如何通過相位延遲實(shí)現(xiàn)3D音效,使聽者兩耳處產(chǎn)生與標(biāo)準(zhǔn)視聽條件相同的信號(hào),并以MAX9775耳機(jī)放大器為例進(jìn)行了說明。
引言
通常,只有在揚(yáng)聲器間隔達(dá)到一定距離時(shí)才能獲得較好的立體聲效果,但是,有些應(yīng)用中必須將揚(yáng)聲器安裝在一起,例如:掌上電腦、手機(jī)等。對(duì)于這類設(shè)計(jì),需要通過引入干擾波在右聲道中抵消左聲道的信號(hào),在左聲道中抵消右聲道的信號(hào),從而仿真立體聲音效。這種方法稱作消串?dāng)_。由此產(chǎn)生的立體聲效果優(yōu)于揚(yáng)聲器間距達(dá)到四倍以上時(shí)的效果。
原理
為了更好地理解這一現(xiàn)象,我們首先考察一下人耳、大腦如何確定音源位置。人耳對(duì)頻率范圍在20Hz至20kHz的音頻信號(hào)比較敏感,聲波在傳入人耳內(nèi)部之前已經(jīng)過耳廓處理,經(jīng)過耳廓成型的信號(hào)按照傳輸方向改變聲波共振特性,大腦根據(jù)所產(chǎn)生的聲譜信息確認(rèn)音源方向。
當(dāng)聲波從指定的方向傳入人耳時(shí),到達(dá)左、右耳時(shí)間的微小差異也有助于確定音源方向。這種時(shí)間延遲,即兩側(cè)聲音時(shí)延(ITD),結(jié)合人耳的頻響特性確定頭部相關(guān)傳輸函數(shù)(HRTF,一種聲音定位處理技術(shù))1。HRTF函數(shù)與特定聲源、聽者耳朵的頻響特性有關(guān)。它包含了聲源到聽者頭部的距離、兩耳的間距和聲音頻率等參數(shù)。
實(shí)現(xiàn)3D音效的根本方法是聽者兩耳處產(chǎn)生與標(biāo)準(zhǔn)視聽條件相同的信號(hào)。將每個(gè)聲源信號(hào)與相應(yīng)聲源方向的HRTF相結(jié)合,可以達(dá)到這一3D效果2。
改善多媒體3D音效
大多數(shù)增強(qiáng)3D效果的立體聲多媒體產(chǎn)品都未加入實(shí)現(xiàn)真正3D聲效所需的全部方位信息。這些多媒體系統(tǒng)通過簡(jiǎn)單的相位延遲電路模擬HRTF,從而使感觀上的聲場(chǎng)更加寬廣。因而,靠近放置的揚(yáng)聲器所表現(xiàn)出的距離也要大于實(shí)際距離。
當(dāng)聆聽兩個(gè)揚(yáng)聲器發(fā)出的聲音時(shí),左聲道的聲音先到達(dá)左耳,后到達(dá)右耳;右聲道的聲音先到達(dá)右耳,后到達(dá)左耳。右耳聽到較低音量的左聲道信號(hào),左耳聽到較低音量的右聲道信號(hào)。這種效應(yīng)稱為音頻串?dāng)_(圖1)。
圖1. 音頻串?dāng)_指的是右聲道立體聲揚(yáng)聲器的聲音傳入左耳,或者是相反方向的聲音傳遞。
當(dāng)兩個(gè)揚(yáng)聲器的間距逐漸縮小時(shí),這種時(shí)延逐漸縮小,直到最后兩個(gè)揚(yáng)聲器聽起來如同一個(gè)揚(yáng)聲器的效果。這種串?dāng)_會(huì)使人腦“意識(shí)”到兩個(gè)音源距離非常近。為了從緊湊的音源間距獲得相隔較遠(yuǎn)的音源效果,必須消除耳間串?dāng)_。在每個(gè)揚(yáng)聲器中加入抵消另一個(gè)揚(yáng)聲器聲音的信號(hào),在音源前端消除聽覺串?dāng)_。這種串?dāng)_的消除使聽者感覺聲音發(fā)自相隔較遠(yuǎn)的音源信號(hào)3。
利用相位延遲消除串?dāng)_
在無(wú)線廣播的天線陣列中通常通過在多發(fā)射器的每一路驅(qū)動(dòng)信號(hào)中引入相位延遲來控制波束的寬度和方向。延方向排列的單天線在延x–y平面的所有方向的輻射是相同的。將幾個(gè)發(fā)射天線排列起來可以使無(wú)線電波的傳播被約束在x–y平面上有限的幾個(gè)波瓣內(nèi)。對(duì)于給定的天線間距,波瓣的寬度隨著無(wú)線電波頻率的增大和天線數(shù)量的增多而減小。例如,五單元天線矩陣發(fā)射零相位延遲的信號(hào)(即完全相同的信號(hào))產(chǎn)生的典型輻射圖形如圖2所示。
圖2. 五單元天線矩陣(單元間相差為零)產(chǎn)生的輻射圖,天線位于原點(diǎn),沿x軸以半波長(zhǎng)為間距。
除了改變波瓣的寬度,通過對(duì)連續(xù)單個(gè)天線的信號(hào)設(shè)定固定的相位延遲α (圖3),還可以實(shí)現(xiàn)主波瓣在x–y平面內(nèi)的旋轉(zhuǎn)。天線陣列的輻射圖正比于天線陣列系數(shù)F(u):
其中,N是陣列中天線的數(shù)量,為輻射波數(shù),d為天線間距,Ψ為天線與x軸正半軸的夾角4。
圖3. 五單元天線矩陣產(chǎn)生的輻射圖,單元間相差分別為π/2 (a)和2π/3 (b)。
聲波中的應(yīng)用
因?yàn)槁暡ㄒ沧駨寞B加原理,所以可以應(yīng)用這一原理組建“揚(yáng)聲器陣列”,使聲音從一個(gè)聲道傳入左耳,從另一個(gè)聲道傳入右耳(圖4)。
圖4. 在這個(gè)立體聲音頻揚(yáng)聲器陣列框圖中包括兩個(gè)緩沖放大器,每個(gè)放大器增加α°的相位延時(shí)。
由于HRTF指標(biāo)與指定音源和聽眾的位置有關(guān),推導(dǎo)HRTF時(shí)必須規(guī)定假設(shè)條件,消除特定應(yīng)用中的聲音串?dāng)_。
假設(shè)揚(yáng)聲器置于手持設(shè)備,揚(yáng)聲器間距d不會(huì)超過7cm,并假設(shè)頭的寬度是20cm,耳朵和手持設(shè)備的距離為50cm。則夾角ΨL和ΨR (x正半軸與聽眾左、右耳之間的夾角)為78.5°和101.5°。當(dāng)左聲道沒有信號(hào),而右聲道有信號(hào)時(shí),最合適的相差應(yīng)當(dāng)使右耳附近的聲強(qiáng)最大(圖5)。
圖5. 圖4架構(gòu)中信號(hào)僅作用在右聲道,α = 90°、f = 6.1kHz、d = 7cm時(shí),在右耳、左耳產(chǎn)生的聲音幅度的比值最大。
由式1可以看出,對(duì)于兩個(gè)單元天線陣列的F(u),當(dāng)u = 0時(shí)得到最大值;當(dāng)u = π時(shí)得到最小值。當(dāng)右聲道信號(hào)不為零時(shí),可得:
所以,最佳相差為-90°。將帶入方程:
6.1kHz接近人耳聽覺的最敏感頻率,當(dāng)信號(hào)偏離這一最佳頻率時(shí),該固定相差產(chǎn)生的音效質(zhì)量會(huì)降低,但是該技術(shù)仍好于其它的相位延遲方法,比如:相位延遲與頻率成線性關(guān)系的方法。
電路設(shè)計(jì)
產(chǎn)生固定相位延遲(即,相差)的網(wǎng)絡(luò)在無(wú)線通信中有廣泛的應(yīng)用,早在二十世紀(jì)五十年代就已經(jīng)出現(xiàn)基于此方法的設(shè)計(jì)?;镜耐?fù)浣Y(jié)構(gòu)包括兩個(gè)級(jí)聯(lián)的一階全通電路(圖6),它們實(shí)現(xiàn)基于共模輸入的非恒定相移。在特定的頻率范圍內(nèi),此系統(tǒng)表現(xiàn)出近似恒定的相移。
圖6. 一階全通電路
無(wú)源方案可以實(shí)現(xiàn)該電路,但是更通用的方法是有源電路(圖7)。對(duì)于線性信號(hào)(相應(yīng)的輸入通道),電路呈現(xiàn)為一個(gè)ft = 10kHz的相移濾波器,對(duì)于積分信號(hào)(另一路輸入),電路呈現(xiàn)為一個(gè)ft = 1kHz的相移濾波器。目的是使線性輸入信號(hào)和積分信號(hào)之間在音頻帶寬1kHz至10kHz范圍內(nèi)呈現(xiàn)90°相移。
圖7. 在級(jí)聯(lián)的一階有源全通電路中,這是最常用的一種電路。
圖8中級(jí)聯(lián)的一階全通電路在1kHz至10kHz的范圍內(nèi),L和Q兩個(gè)輸出的相移近似90°。因?yàn)榇蟛糠直銛y設(shè)備的揚(yáng)聲器太小,無(wú)法支持全部的聲譜,所以1kHz至10kHz的輸出范圍是可行的。通常便攜設(shè)備的揚(yáng)聲器在300Hz以下只能提供很小的響應(yīng)。
圖8. 圖7電路的頻率響應(yīng),在1kHz至10kHz整個(gè)頻率范圍內(nèi)提供近似的90°相移。
為了進(jìn)一步增強(qiáng)3D效果,可以增加更多的級(jí)聯(lián)結(jié)構(gòu),把它們適當(dāng)排列,從而在更寬的頻率范圍內(nèi)實(shí)現(xiàn)90°相移。兩級(jí)級(jí)聯(lián)結(jié)構(gòu)可以在電路復(fù)雜性、功耗和性能之間達(dá)到較好的折衷。Maxim的MAX9775音頻IC結(jié)合了相位延遲電路和音頻功放,采用單芯片可實(shí)現(xiàn)更寬的播放音域。
參考文獻(xiàn)
Bedrosian, S.D., "Normalized design of 90° phase-shift networks., IRE Transactions on Circuit Theory, (June 1960), pp. 128–136.
Albersheim, W.J., Shirley, F.R., "Computation methods for broad-band 90° phase-difference methods," IEEE Transactions on Circuit Theory, 16, (2) (May 1969), pp. 189–196.
尾注
1Sibbald, Alastair, An Introduction to Sound and Hearing, Sensaura LTD., 2000.
2Casey, Michael, Gardener, William G., Basu, Sumit, Vision Steered Beam-Forming and Transaural Rendering for the Artificial Life Interactive Video Environment, MIT Media Laboratory, Cambridge MA, 1995.
3Gardner, William G, 3D Audio Acoustic Environment Modeling, Wave Art Inc., 99 Massachusetts Ave., Suite 7, Arlington, MA. March 15, 1999.
4Kong, J. A, Electromagnetic Wave Theory, Second Ed., John Wiley & Sons, Inc., New York, 1990. pp. 243–269.
評(píng)論
查看更多