比較器是業(yè)界應用極其廣泛的標準元件。比較器具有外部滯后、鎖存、靈活的電源電壓和輸出配置等多項功能和特性。作為一名出色的模擬工程師,熟練使用比較器是必須的。在實際設計應用的比較器經(jīng)常用到,偶爾工程師也會將運算放大器來作為比較器使用,那么究竟比較器是什么呢?原理和作用是什么?運算放大器真的可以用作比較器來使用嗎?運算放大器和比較器的區(qū)別在哪里?在這里小編為大家整理了一些關(guān)于運算放大器和比較器的內(nèi)容,供大家學習和參考。
什么是比較器?比較器原理
我們從工程學教程里了解到,運算放大器需要三個內(nèi)部級才能發(fā)揮出最佳性能,比如實現(xiàn)高輸入阻抗、低輸出阻抗和高增益等。三個內(nèi)部級分別是差分輸入級、增益級(有或沒有內(nèi)部頻率補償)和輸出級。這種基本的體系結(jié)構(gòu)已經(jīng)沿用了好幾十年。早期,運算放大器曾作為數(shù)學運算的基本器件,主要以電壓和電壓信號來作標識。在反饋應用中,通過配置放大器周邊的無源或有源器件,可以令系統(tǒng)執(zhí)行加、減、乘、除和對數(shù)等運算。
比較器其實可看成一個能夠作邏輯 “決策”的邏輯輸出電路。換句話說,它可把輸入信號與已定義的參考電平進行比較。比較器的邏輯輸出功能可以幫助用戶設計具有多樣化的額外功能的模擬電路。而且,無論是高速ADC、SAR型ADC還是Sigma-Delta ADC,比較器都是組建集成ADC的內(nèi)部基本而又關(guān)鍵的模塊。
比較器的基本體系結(jié)構(gòu)和大部份的參數(shù)屬性都與運算放大器類似。因此,運算放大器也可充當比較器。但放大器并不是專門針對比較功能而開發(fā)的,而且放大器的數(shù)據(jù)表一般都不保證這項功能可否正常實現(xiàn)。運算放大器與比較器的最大分別在于比較器是開環(huán)設計,沒有反饋環(huán)節(jié),而且輸出會在任何一條電源軌的范圍內(nèi)顯示差分輸入信號的極性。
此外,比較器一般都會被設計成 “過壓驅(qū)動”(overdriven),意思是它可經(jīng)常處理較大的差分輸入電壓。相反,對于運算放大器而言,它通常被設計成在較小的信號和差分電壓下運行,而這里的反饋概念通常都含有 “過驅(qū)” 意義,這樣會導致開環(huán)配置中的輸入出現(xiàn)飽和效應。如果將輸入的極性倒轉(zhuǎn),則過驅(qū)時產(chǎn)生的輸入級的飽和會導致信號的傳播具有一定的延遲或相位滯后。
再者,對于較大的差分輸入電壓來說,運算放大器的輸出很容易到達極限輸出,從而啟動保護功能。保護功能的啟動將會導致輸入阻抗的量級明顯下降,迫使過量的電流涌到輸入級,造成過載,甚至過熱。如果在設計上沒有保護的措施,那便可能導致整個器件損毀。因此,在器件的數(shù)據(jù)表,通常都會提供器件的最大輸入電流的額定值,以幫助設計人員決定用多少附加輸入電阻。
比較器通常都不進行頻率補償功能,因此其工作速度相當高,同時開關(guān)時間也在某程度上取決于 “過驅(qū)”的程度。圖1表示出當衡量一個輸出狀態(tài)變化時的差分輸入電壓。從圖中可看出過驅(qū)需要高于失調(diào)電壓才可以保證比較器有效地進行工作。一般來說,較大的過驅(qū)可加快開關(guān)時間。
比較器一般都以參數(shù)值和/或功能來分類,例如:
圖1 輸入過驅(qū)和相關(guān)的傳播延遲消散
·通用比較器;
·高速比較器(傳播延遲少于50毫微秒);
·低壓比較器(電源電壓VCC低于5V);
·微功率比較器(靜態(tài)電流低于20微安);
·集成參考的比較器。
比較器的特性取決于其類別,分別為:
·傳播延遲—由施加一個差分信號與切換狀態(tài)的輸出級之間的時間延遲 (例如是50%)。
·內(nèi)部或外部滯后— 滯后是一種介乎低到高開關(guān)電壓和高到低開關(guān)電壓之間的設計預算中或需激活的差別。有些比較器具備可調(diào)節(jié)滯后水平的功能,方法是通過在指定的引腳上施加電壓。
·上升及下降時間—一般是輸出電壓的10%至90%的時間,并且上升和下降緣的時間可以有差別,假如這情況出現(xiàn),那將會導致輸出的周期時間會相對于輸入信號而改變。
·觸發(fā)率—指在某一個頻率下,比較器的輸出可以跟隨輸入的狀態(tài)來變化。
·消散—量度傳播延遲變化的參數(shù)。
·抖動—可以是隨機或事前決定,負責量度信號緣在時間上的不定性。
現(xiàn)代高速比較器
現(xiàn)今業(yè)界常用的比較器大多數(shù)是經(jīng)過優(yōu)化設計的,可為系統(tǒng)帶來增值效益。最普遍的比較器應用類別是電平平移?,F(xiàn)今,TTL和CMOS邏輯電平均已被廣泛采用。對于高速應用而言,還可采用ECL(發(fā)射極耦合邏輯)、RSPECL(擺幅削減正發(fā)射極耦合邏輯)或LVDS(低壓差分信號)。當需要從電纜和線路連接IC和FPGA,或在背板內(nèi)的信號速度處于由每秒數(shù)百兆位至數(shù)千兆位的高速范圍時,上述方案便會成為首選。LMH7220和 LMH7322便是可用作為高速/超高速電平比較變換的高速比較器件。
圖2表示出一個LMH7322雙高速比較器,并且以ECL變換到RSPECL的轉(zhuǎn)換器方式實現(xiàn)。ECL高速邏輯已經(jīng)沿用了很多年,尤其是供軍事或測量用以及工業(yè)用的高檔設置,而且它們屬于負電壓電平參考信號(-5.2V接地),難以連接到其它分離電源或單電源系統(tǒng)。幸而,LMH7322不單可有效解決上述的問題,與此同時比較起一般的邏輯電平移位器,它可提供給設計人員更大的自由度。該比較器在輸入和輸出電路上擁有不同的電源引腳,而其電源可以是由2.7V至12V的單一電源,又或是由±6V至±1.35V的分離電源。器件在輸入時的共模范圍可超出最低的電源電平200mV,從而令能在如此低的輸入信號電平下感測到細微的信號。在高邊上,共模范圍受到1.5V的VCCI的限制,但需配合2.7V的VCCI和VCCO,還是有可能在輸出上提供PECL邏輯電平。
圖2 ECL 到 RSPECL 的電平變換
假如典型的上升和下降時間為160ps,而典型的傳播延遲則為700ps,那便可促使該比較器為高速至每秒數(shù)千兆位的信號進行緩沖和電平平移,從而使電路適合應用在高速數(shù)據(jù)、時移、緩沖,或是來自電纜或背板的信號恢復。一個可調(diào)節(jié)的滯后可通過HYST引腳來施行,這做法對于失真信號或DC耦合線路或移動緩慢的信號來說最為受用,因為這可避免出現(xiàn)不必要的開關(guān)和觸發(fā)。圖2中的應用電路表示出輸入VCCI信號是處于系統(tǒng)接地電平,而VCCO電平和VEE電平則分別處于+5V和-5.2V(這便是ECL驅(qū)動器負電源電平)。此外,輸出電壓將可符合RSPECL的規(guī)格。同一個器件可以用來介接到其他的邏輯電平,只需稍為調(diào)節(jié)VCCI和VCCO及VEE電壓電平便可。加入例如是50W的適當線路端接是有可能的,圖3所示為一基本端接例子。
圖3中的差分輸出以一個跟隨著電源電流的發(fā)射極來實現(xiàn),并且確保兩個輸出引腳之間的擺幅差別有400mV。假如這里采用有源端接,那電壓便會低于VCCO電平2V,否則每當端接到芯片的最負電源時,便需計算出正確的負載電阻。
圖3 LMH7322的輸出線路端接例子
此外,上升/下降時間或帶有消散的傳播延遲等參數(shù)均需要慎重考慮,而且它們不是全部都被規(guī)定。消散可以因共模、過驅(qū)和壓擺率的變化而引致,從而影響傳播延遲、工作周期和抖動。以LMH7322為例,過驅(qū)消散或比較20mV至1V過驅(qū)的變化為75ps,在這情況下會大概增加本身的傳播延遲約10%。
一個 “新類別”—精度比較器
一般比較器都有約10mV或更大的輸入失調(diào)電壓。精度型比較器的優(yōu)點很明顯,因為它可比較微弱信號。迄今為止,仍有人采用運算放大器作為比較器,就是因為一般的比較器不具有足夠的精度。在電池電量監(jiān)測應用中,當充電/放電的電壓梯度相對平坦時,便可采用這些參數(shù)。其他特色功能包括低功耗、高精度,及可調(diào)整的檢測閾值。
圖4 具備”低電荷”狀態(tài)顯示的電池監(jiān)視器
圖4是采用LMP7300的電池電壓監(jiān)視器,該器件具有集成式高精度電壓參考的微功率比較器。該電路的電池泄漏電流極小,典型為10mA的典型靜態(tài)電流,并且擁有2.5V至12V的寬闊電壓范圍,它可在高邊(電源線路)感應電流和具備有一個2.048V 55ppm的電壓參考和通過兩根引腳完成的可調(diào)節(jié)滯后。開漏輸出能夠驅(qū)動一個LED或觸發(fā)一個微控制器的輸入邏輯引腳。在圖4中,R1和R2會為達到低的靜態(tài)電流而設置成高阻抗。假如要觸發(fā)一個低電池條件,那下列的公式1和2便可用來決定R1的數(shù)值:
(1)
那么,如果
(2)
若R2已知(例如是1MW),Vref 為2.048V,Vbatt應該是2.7V
(3)
190W和5mF的RC組合對于緩沖參考是很重要,因為這組合具有大約1mA的負載驅(qū)動能力和它可改善線路的調(diào)節(jié)能力。
圖5 非對稱滯后的典型配置
圖5表示出可用來提供非對稱滯后的內(nèi)部參考和四個外部電阻器。電路中的跳變點可用下式4和5計算出來,至于滯后輸入電壓和電流范圍以及參考負載電流數(shù)值則可從數(shù)據(jù)表中找到,但這些數(shù)值可能會限制了真正的電阻值范圍和比率。
放大器和比較器的區(qū)別
1.放大器與比較器的主要區(qū)別是閉環(huán)特性
放大器大都工作在閉環(huán)狀態(tài),所以要求閉環(huán)后不能自激。而比較器大都工作在開環(huán)狀態(tài)更追求速度。對于頻率比較低的情況放大器完全可以代替比較器(要主意輸出電平),反過來比較器大部分情況不能當作放大器使用。
因為比較器為了提高速度進行優(yōu)化,這種優(yōu)化卻減小了閉環(huán)穩(wěn)定的范圍。而運放專為閉環(huán)穩(wěn)定范圍進行優(yōu)化,故降低了速度。所以相同價位檔次的比較器和放大器最好是各司其責。如同放大器可以用作比較器一樣,也不能排除比較器也可以用作放大器。但是你為了讓它閉環(huán)穩(wěn)定所付出的代價可能超過加一個放大器!
換言之,看一個運放是當作比較器還是放大器就是看電路的負反饋深度。所以,淺閉環(huán)的比較器有可能工作在放大器狀態(tài)并不自激。但是一定要作大量的試驗,以保證在產(chǎn)品的所有工作狀態(tài)下都穩(wěn)定!這時候你就要成本/風險仔細核算一下了。
2.算放大器和比較器如出一轍,簡單的講,比較器就是運放的開環(huán)應用,但比較器的設計是針對電壓門限比較而用的,要求的比較門限精確,比較后的輸出邊沿上升或下降時間要短,輸出符合TTL/CMOS電平/或OC等,不要求中間環(huán)節(jié)的準確度,同時驅(qū)動能力也不一樣。一般情況:用運放做比較器,多數(shù)達不到滿幅輸出,或比較后的邊沿時間過長,因此設計中少用運放做比較器為佳。
比較器和運放雖然在電路圖上符號相同,但這兩種器件確有非常大的區(qū)別,一般不可以互換,區(qū)別如下:
1)、比較器的翻轉(zhuǎn)速度快,大約在ns數(shù)量級,而運放翻轉(zhuǎn)速度一般為us數(shù)量級(特殊的高速運放除外)。
2)、運放可以接入負反饋電路,而比較器則不能使用負反饋,雖然比較器也有同相和反相兩個輸入端,但因為其內(nèi)部沒有相位補償電路,所以,如果接入負反饋,電路不能穩(wěn)定工作。內(nèi)部無相位補償電路,這也是比較器比運放速度快很多的主要原因。
3)、運放輸出級一般采用推挽電路,雙極性輸出。而多數(shù)比較器輸出級為集電極開路結(jié)構(gòu),所以需要上拉電阻,單極性輸出,容易和數(shù)字電路連接。
通過以上我們可以看出放大器和比較器還是有比較多的區(qū)別的,但是放大器可以替代比較器嗎?都有哪些的注意點呢?
運算放大器可以替代比較器嗎?
許多人偶爾會把運算放大器當比較器使用。一般而言,當您只需要一個簡單的比較器,并且您在四運算放大器封裝中還有一個“多余”運算放大器時,這種做法是可行的。穩(wěn)定運算放大器運行所需的相位補償意味著把運算放大器用作比較器時其速度會非常的低,但是如果對速度要求不高,則運算放大器可以滿足需求。偶爾會有人問到我們運算放大器的這種使用方法。這種方法有時有效,有時卻不如人們預期的那樣效果好。為什么會出現(xiàn)這種情況呢?
許多運算放大器都在輸入端之間有電壓鉗位,其大多數(shù)一般都使用背靠背二極管(有時使用兩個或者更多的串聯(lián)二極管)來實施。這些二極管保護輸入晶體管免受其基極結(jié)點反向擊穿的損害。差動輸入為約 6V 時便會出現(xiàn)許多 IC 工藝擊穿,這會極大地改變或者損壞晶體管。下圖顯示了 NPN 輸入級,D1 和 D2 提供了這種保護功能。
在大多數(shù)常見運算放大器應用中,輸入電壓均約為零伏,其根本無法開啟這些二極管。但是很明顯,對于比較器的運行而言,這種保護便成了問題。在一個輸入拖拽另一個輸入(以一種討厭的方式拉其電壓)以前,差動電壓范圍(約0.7V)受限。盡管如此,但我們還是可以把運算放大器用作比較器。但是,在我們這樣做時必須小心謹慎。在一些電路中,這種做法可能是完全不能接受的。
問題是我們(包括其他運算放大器廠商)并沒有總是說明這些鉗位的存在。即使有所說明,我們可能也不會做詳細的解釋或者闡述。也許我們應該說:“用作比較器時,請小心謹慎!”產(chǎn)品說明書的作者們通常也只是假設您肯定會把運算放大器當作運算放大器用。最近,我們在美國亞利桑那州圖森產(chǎn)品部召開了一個會議。會議決定,我們以后將會更加清楚地說明這種情況。但是,現(xiàn)在已經(jīng)生產(chǎn)出來的運算放大器怎么辦呢?下列指導建議可能會對您有所幫助:
一般而言,雙極 NPN 晶體管運算放大器都有輸入鉗位,例如:OP07、OPA227 和 OPA277 等。uA741 是一個例外,它具有 NPN 輸入晶體管,并且有一些為 NPN 提供固有保護的附加串聯(lián)橫向 PNP。
使用橫向 PNP 輸入晶體管的通用運算放大器一般沒有輸入鉗位,例如:LM324、LM358、 OPA234、OPA2251 和 OPA244。這些運算放大器一般為“單電源”類型,其意味著它們擁有一個擴展至負電源端(或者稍低)的共模范圍。輸入偏置電流為一個負數(shù)時,表示輸入偏置電流自輸入引腳流出。這時,我們通常可以認定它們?yōu)檫@類運算放大器。但是,需要注意的是,使用 PNP 輸入的高速運算放大器一般有輸入鉗位,而這些 PNP 是一些具有更低擊穿電壓的垂直 PNP。
更高電壓(一般大于 20V)下工作的 JFET 和 CMOS 放大器,可能有也可能沒有鉗位。這種不確定性,要求您進行更多仔細的檢查。所用工藝和晶體管類型的特性,決定了其內(nèi)部是否存在鉗位。
大多數(shù)低壓 CMOS 運算放大器都沒有鉗位。自動歸零或者斬波器類型是一個特例,其可能具有類似鉗位的行為表現(xiàn)。
底線是……如果您考慮把運算放大器用作比較器,請一定小心謹慎。仔細閱讀產(chǎn)品說明書,不要漏掉一點信息,包括應用部分的一些注解內(nèi)容。在電路試驗板或者樣機中驗證其表現(xiàn),查看一個輸入電壓對另一個輸入電壓的影響。不要依賴 SPICE 宏模型。一些宏模型可能并不包括對鉗位建模的一些額外組件。另外,當您笨手笨腳地把運算放大器從一個軌移動到另一個軌時可能出現(xiàn)其他一些現(xiàn)象,我們可能無法精確地對這些現(xiàn)象建模。
比較器典型應用電路
這里舉兩個簡單的比較器電路為例來說明其應用。
1.散熱風扇自動控制電路
一些大功率器件或模塊在工作時會產(chǎn)生較多熱量使溫度升高,一般采用散熱片并用風扇來冷卻以保證正常工作。這里介紹一種極簡單的溫度控制電路,如圖7所示。負溫度系數(shù)(NTC)熱敏電阻RT粘貼在散熱片上檢測功率器件的溫度(散熱片上的溫度要比器件的溫度略低一些),當5V電壓加在RT及R1電阻上時,在A點有一個電壓VA。當散熱片上的溫度上升時,則熱敏電阻RT的阻值下降,使VA上升。RT的溫度特性如圖8所示。它的電阻與溫度變化曲線雖然線性度并不好,但是它是單值函數(shù)(即溫度一定時,其阻值也是一定的單值)。如果我們設定在80℃時應接通散熱風扇,這80℃即設定的閾值溫度TTH,在特性曲線上可找到在80℃時對應的RT的阻值。R1的阻值是不變的(它安裝在電路板上,在環(huán)境溫度變化不大時可認為R1值不變),則可以計算出在80℃時的VA值。
?
?
R2與RP組成分壓器,當5V電源電壓是穩(wěn)定電壓時(電壓穩(wěn)定性較好),調(diào)節(jié)RP可以改變VB的電壓(電位器中心頭的電壓值)。VB值為比較器設定的閾值電壓,稱為VTH。
設計時希望散熱片上的溫度一旦超過80℃時接通散熱風扇實現(xiàn)散熱,則VTH的值應等于80℃時的K值。一旦VA》VTH,則比較器輸出低電平,繼電器K吸合,散熱風扇(直流電機)得電工作,使大功率器件降溫。VA、VTH電壓變化及比較器輸出電壓Vout的特性如圖9所示。這里要說清楚的是在VA開始大于VTH時,風扇工作,但散熱體有較大的熱量,要經(jīng)過一定時問才能把溫度降到80℃以下。
?
從圖7可看出,要改變閾值溫度TTH十分方便,只要相應地改變VTH值即可。VTH值增大,TTH增大;反之亦然,調(diào)整十分方便。只要RT確定,RT的溫度特性確定,則R1、R2、RP可方便求出(設流過RT、R1及R2、RP的電流各為0.1~0.5mA)。
2.窗口比較器
窗口比較器常用兩個比較器組成(雙比較器),它有兩個閾值電壓VTHH(高閾值電壓)及VTHL(低閾值電壓),與VTHH及VTHL比較的電壓VA輸入兩個比較器。若VTHL≤VA≤VTHH,Vout輸出高電平;若VA《VTHL,VA》VTHH,則Vout輸出低電平,如圖10所示。圖10是一個冰箱報警器電路。冰箱正常工作溫度設為0~5℃,(0℃到5℃是一個“窗口”),在此溫度范圍時比較器輸出高電平(表示溫度正常);若冰箱溫度低于0V或高于5℃,則比較器輸出低電平,此低電平信號電壓輸入微控制器(μC)作報警信號。
?
溫度傳感器采用NTC熱敏電阻RT,已知RT在0℃時阻值為333.1kΩ;5℃時阻值為258.3kΩ,則按1.5V工作電壓及流過R1、RT的電流約1.5 uA,可求出R1的值。R1的值確定后,可計算出0℃時的VA值為0.5V(按圖10中R1=665kΩ時),5℃時的VA值為0.42V,則VTHL=0.42V,VTHH=0.5V。若設R2=665kΩ,則按圖11,可求出流過R2、R3、R4電阻的電流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA, 則可求出R3=53.3kΩ。
?
本例中兩個比較器采用低工作電壓、低功耗、互補輸出雙比較器LT1017,無需外接上拉電阻。
總結(jié):雖然在某種情況下運算放大器可以作為比較器來使用,但是當你對運算速度的要求較高時,運算放大器就不能滿足比較器的需求了。通過這篇文章大家可以充分了解到運算放大器與比較器的不同之處及運算放大器在何種情況下可用作比較器,也讓大家對放大器和比較器有了充分的認識與理解。
評論
查看更多