溫度傳感器(temperature transducer)是指能感受溫度并轉(zhuǎn)換成可用輸出信號的傳感器。溫度傳感器是溫度測量儀表的核心部分,品種繁多。按測量方式可分為接觸式和非接觸式兩大類,按照傳感器材料及電子元件特性分為熱電阻和熱電偶兩類。
溫度傳感器的分類
接觸式
接觸式溫度傳感器的檢測部分與被測對象有良好的接觸,又稱溫度計。
溫度計通過傳導(dǎo)或?qū)α鬟_到熱平衡,從而使溫度計的示值能直接表示被測對象的溫度。一般測量精度較高。在一定的測溫范圍內(nèi),溫度計也可測量物體內(nèi)部的溫度分布。但對于運動體、小目標(biāo)或熱容量很小的對象則會產(chǎn)生較大的測量誤差,常用的溫度計有雙金屬溫度計、玻璃液體溫度計、壓力式溫度計、電阻溫度計、熱敏電阻和溫差電偶等。它們廣泛應(yīng)用于工業(yè)、農(nóng)業(yè)、商業(yè)等部門。在日常生活中人們也常常使用這些溫度計。
隨著低溫技術(shù)在國防工程、空間技術(shù)、冶金、電子、食品、醫(yī)藥和石油化工等部門的廣泛應(yīng)用和超導(dǎo)技術(shù)的研究,測量120K以下溫度的低溫溫度計得到了發(fā)展,如低溫氣體溫度計、蒸汽壓溫度計、聲學(xué)溫度計、順磁鹽溫度計、量子溫度計、低溫?zé)犭娮韬偷蜏販夭铍娕嫉?。低溫溫度計要求感溫元件體積小、準確度高、復(fù)現(xiàn)性和穩(wěn)定性好。利用多孔高硅氧玻璃滲碳燒結(jié)而成的滲碳玻璃熱電阻就是低溫溫度計的一種感溫元件,可用于測量1.6~300K范圍內(nèi)的溫度。
非接觸式
它的敏感元件與被測對象互不接觸,又稱非接觸式測溫儀表。這種儀表可用來測量運動物體、小目標(biāo)和熱容量小或溫度變化迅速(瞬變)對象的表面溫度,也可用于測量溫度場的溫度分布。
最常用的非接觸式測溫儀表基于黑體輻射的基本定律,稱為輻射測溫儀表。輻射測溫法包括亮度法(見光學(xué)高溫計)、輻射法(見輻射高溫計)和比色法(見比色溫度計)。各類輻射測溫方法只能測出對應(yīng)的光度溫度、輻射溫度或比色溫度。只有對黑體(吸收全部輻射并不反射光的物體)所測溫度才是真實溫度。如欲測定物體的真實溫度,則必須進行材料表面發(fā)射率的修正。而材料表面發(fā)射率不僅取決于溫度和波長,而且還與表面狀態(tài)、涂膜和微觀組織等有關(guān),因此很難精確測量。在自動化生產(chǎn)中往往需要利用輻射測溫法來測量或控制某些物體的表面溫度,如冶金中的鋼帶軋制溫度、軋輥溫度、鍛件溫度和各種熔融金屬在冶煉爐或坩堝中的溫度。在這些具體情況下,物體表面發(fā)射率的測量是相當(dāng)困難的。
對于固體表面溫度自動測量和控制,可以采用附加的反射鏡使與被測表面一起組成黑體空腔。附加輻射的影響能提高被測表面的有效輻射和有效發(fā)射系數(shù)。利用有效發(fā)射系數(shù)通過儀表對實測溫度進行相應(yīng)的修正,最終可得到被測表面的真實溫度。最為典型的附加反射鏡是半球反射鏡。球中心附近被測表面的漫射輻射能受半球鏡反射回到表面而形成附加輻射,從而提高有效發(fā)射系數(shù)式中ε為材料表面發(fā)射率,ρ為反射鏡的反射率。至于氣體和液體介質(zhì)真實溫度的輻射測量,則可以用插入耐熱材料管至一定深度以形成黑體空腔的方法。通過計算求出與介質(zhì)達到熱平衡后的圓筒空腔的有效發(fā)射系數(shù)。在自動測量和控制中就可以用此值對所測腔底溫度(即介質(zhì)溫度)進行修正而得到介質(zhì)的真實溫度。
非接觸測溫優(yōu)點:測量上限不受感溫元件耐溫程度的限制,因而對最高可測溫度原則上沒有限制。對于1800℃以上的高溫,主要采用非接觸測溫方法。隨著紅外技術(shù)的發(fā)展,輻射測溫 逐漸由可見光向紅外線擴展,700℃以下直至常溫都已采用,且分辨率很高。
溫度測量應(yīng)用非常廣泛,不僅生產(chǎn)工藝需要溫度控制,有些電子產(chǎn)品還需對它們自身的溫度進行測量,如計算機要監(jiān)控CPU的溫度,馬達控制器要知道功率驅(qū)動IC的溫度等等,下面介紹幾種常用的溫度傳感器。
溫度是實際應(yīng)用中經(jīng)常需要測試的參數(shù),從鋼鐵制造到半導(dǎo)體生產(chǎn),很多工藝都要依靠溫度來實現(xiàn),溫度傳感器是應(yīng)用系統(tǒng)與現(xiàn)實世界之間的橋梁。本文對不同的溫度傳感器進行簡要概述,并介紹與電路系統(tǒng)之間的接口。
常用溫度傳感器原理及應(yīng)用
熱敏電阻器
用來測量溫度的傳感器種類很多,熱敏電阻器就是其中之一。許多熱敏電阻具有負溫度系數(shù)(NTC),也就是說溫度下降時它的電阻值會升高。在所有被動式溫度傳感器中,熱敏電阻的靈敏度(即溫度每變化一度時電阻的變化)最高,但熱敏電阻的電阻/溫度曲線是非線性的。
這些數(shù)據(jù)是對Vishay-Dale熱敏電阻進行量測得到的,但它也代表了NTC熱敏電阻的總體情況。其中電阻值以一個比率形式給出(R/R25),該比率表示當(dāng)前溫度下的阻值與25℃時的阻值之比,通常同一系列的熱敏電阻器具有類似的特性和相同電阻/溫度曲線。以表1中的熱敏電阻系列為例,25℃時阻值為10KΩ的電阻,在0℃時電阻為28.1KΩ,60℃時電阻為4.086KΩ;與此類似,25℃時電阻為5KΩ的熱敏電阻在0℃時電阻則為 14.050KΩ。
由圖可以看到電阻/溫度曲線是非線性的。
雖然這里的熱敏電阻數(shù)據(jù)以10℃為增量,但有些熱敏電阻可以以5℃甚至1℃為增量。如果想要知道兩點之間某一溫度下的阻值,可以用這個曲線來估計,也可以直接計算出電阻值,計算公式如下:
這里T指開氏絕對溫度,A、B、C、D是常數(shù),根據(jù)熱敏電阻的特性而各有不同,這些參數(shù)由熱敏電阻的制造商提供。
熱敏電阻一般有一個誤差范圍,用來規(guī)定樣品之間的一致性。根據(jù)使用的材料不同,誤差值通常在1%至10%之間。有些熱敏電阻設(shè)計成應(yīng)用時可以互換,用于不能進行現(xiàn)場調(diào)節(jié)的場合,例如一臺儀器,用戶或現(xiàn)場工程師只能更換熱敏電阻而無法進行校準,這種熱敏電阻比普通的精度要高很多,也要貴得多。
圖2是利用熱敏電阻測量溫度的典型電路。電阻R1將熱敏電阻的電壓拉升到參考電壓,一般它與ADC的參考電壓一致,因此如果ADC的參考電壓是5V,Vref也將是5V。熱敏電阻和電阻串聯(lián)產(chǎn)生分壓,其阻值變化使得節(jié)點處的電壓也產(chǎn)生變化,該電路的精度取決于熱敏電阻和電阻的誤差以及參考電壓的精度。
自熱問題
由于熱敏電阻是一個電阻,電流流過它時會產(chǎn)生一定的熱量,因此電路設(shè)計人員應(yīng)確保拉升電阻足夠大,以防止熱敏電阻自熱過度,否則系統(tǒng)測量的是熱敏電阻發(fā)出的熱,而不是周圍環(huán)境的溫度。
熱敏電阻消耗的能量對溫度的影響用耗散常數(shù)來表示,它指將熱敏電阻溫度提高比環(huán)境溫度高1℃所需要的毫瓦數(shù)。耗散常數(shù)因熱敏電阻的封裝、管腳規(guī)格、包封材料及其它因素不同而不一樣。
系統(tǒng)所允許的自熱量及限流電阻大小由測量精度決定,測量精度為±5℃的測量系統(tǒng)比精度為±1℃測量系統(tǒng)可承受的熱敏電阻自熱要大。
應(yīng)注意拉升電阻的阻值必須進行計算,以限定整個測量溫度范圍內(nèi)的自熱功耗。給定出電阻值以后,由于熱敏電阻阻值變化,耗散功率在不同溫度下也有所不同。
有時需要對熱敏電阻的輸入進行標(biāo)定以便得到合適的溫度分辨率,圖3是一個將10~40℃溫度范圍擴展到ADC整個0~5V輸入?yún)^(qū)間的電路。
運算放大器輸出公式如下:
一旦熱敏電阻的輸入標(biāo)定完成以后,就可以用圖表表示出實際電阻與溫度的對應(yīng)情況。由于熱敏電阻是非線性的,所以需要用圖表表示,系統(tǒng)要知道對應(yīng)每一個溫度ADC的值是多少,表的精度具體是以1℃為增量還是以5℃為增量要根據(jù)具體應(yīng)用來定。
累積誤差
用熱敏電阻測量溫度時,在輸入電路中要選擇好傳感器及其它元件,以便和所需要的精度相匹配。有些場合需要精度為1%的電阻,而有些可能需要精度為0.1%的電阻。在任何情況下都應(yīng)用一張表格算出所有元件的累積誤差對測量精度的影響,這些元件包括電阻、參考電壓及熱敏電阻本身。
如果要求精度高而又想少花一點錢,則需要在系統(tǒng)構(gòu)建好后對它進行校準,由于線路板及熱敏電阻必須在現(xiàn)場更換,所以一般情況下不建議這樣做。在設(shè)備不能作現(xiàn)場更換或工程師有其它方法監(jiān)控溫度的情況下,也可以讓軟件建一張溫度對應(yīng)ADC變化的表格,這時需要用其它工具測量實際溫度值,軟件才能創(chuàng)建相對應(yīng)的表格。對于有些必須要現(xiàn)場更換熱敏電阻的系統(tǒng),可以將要更換的元件(傳感器或整個模擬前端)在出廠前就校準好,并把校準結(jié)果保存在磁盤或其它存儲介質(zhì)上,當(dāng)然,元件更換后軟件必須要能夠知道使用校準后的數(shù)據(jù)。
總的來說,熱敏電阻是一種低成本溫度測量方法,而且使用也很簡單,下面我們介紹電阻溫度探測器和熱電偶溫度傳感器。
電阻溫度探測器
電阻溫度探測器(RTD)實際上是一根特殊的導(dǎo)線,它的電阻隨溫度變化而變化,通常RTD材料包括銅、鉑、鎳及鎳/鐵合金。RTD元件可以是一根導(dǎo)線,也可以是一層薄膜,采用電鍍或濺射的方法涂敷在陶瓷類材料基底上。
RTD的電阻值以0℃阻值作為標(biāo)稱值。0℃ 100Ω鉑RTD電阻在1℃時它的阻值通常為100.39Ω,50℃時為119.4Ω,圖4是RTD電阻/溫度曲線與熱敏電阻的電阻/溫度曲線的比較。 RTD的誤差要比熱敏電阻小,對于鉑來說,誤差一般在0.01%,鎳一般為0.5%。除誤差和電阻較小以外,RTD與熱敏電阻的接口電路基本相同。
熱電偶
熱電偶由兩種不同金屬結(jié)合而成,它受熱時會產(chǎn)生微小的電壓,電壓大小取決于組成熱電偶的兩種金屬材料,鐵-康銅(J型)、銅-康銅(T型)和鉻-鋁(K型)熱電偶是最常用的三種。
熱電偶產(chǎn)生的電壓很小,通常只有幾毫伏。K型熱電偶溫度每變化1℃時電壓變化只有大約40μV,因此測量系統(tǒng)要能測出4μV的電壓變化測量精度才可以達到0.1℃。
由于兩種不同類型的金屬結(jié)合在一起會產(chǎn)生電位差,所以熱電偶與測量系統(tǒng)的連接也會產(chǎn)生電壓。一般把連接點放在隔熱塊上以減小這一影響,使兩個節(jié)點處以同一溫度下,從而降低誤差。有時候也會測量隔熱塊的溫度,以補償溫度的影響(圖5)。
測量熱電偶電壓要求的增益一般為100到300,而熱電偶擷取的噪聲也會放大同樣的倍數(shù)。通常采用測量放大器來放大信號,因為它可以除去熱電偶連線里的共模噪聲。市場上還可以買到熱電偶信號調(diào)節(jié)器,如模擬器件公司的AD594/595,可用來簡化硬件接口。
固態(tài)熱傳感器
最簡單的半導(dǎo)體溫度傳感器就是一個PN結(jié),例如二極管或晶體管基極-發(fā)射極之間的PN結(jié)。如果一個恒定電流流過正向偏置的硅 PN結(jié),正向壓降在溫度每變化1℃時會降低1.8mV。很多IC利用半導(dǎo)體的這一特性來測量溫度,包括美信的MAX1617、國半的LM335和LM74 等等。半導(dǎo)體傳感器的接口形式多樣,從電壓輸出到串行SPI/微線接口都可以。
溫度傳感器種類很多,通過正確地選擇軟件和硬件,一定可以找到適合自己應(yīng)用的傳感器。
溫度傳感器應(yīng)用的注意事項
選擇溫度傳感器比選擇其它類型的傳感器所需要考慮的內(nèi)容更多。首先,必須選擇傳感器的結(jié)構(gòu),使敏感元件的規(guī)定的測量時間之內(nèi)達到所測流體或被測表面的溫度。溫度傳感器的輸出僅僅是敏感元件的溫度。實際上,要確保傳感器指示的溫度即為所測對象的溫度,常常是很困難的。 在大多數(shù)情況下,對溫度傳感器的選用,需考慮以下幾個方面的問題:
(1) 被測對象的溫度是否需記錄、報警和自動控制,是否需要遠距離測量和傳送。
?。?) 測溫范圍的大小和精度要求。
?。?) 測溫元件大小是否適當(dāng)。
?。?) 在被測對象溫度隨時間變化的場合,測溫元件的滯后能否適應(yīng)測溫要求。
?。?) 被測對象的環(huán)境條件對測溫元件是否有損害。
?。?) 價格如保,使用是否方便。
溫度傳感器的選擇主要是根據(jù)測量范圍。當(dāng)測量范圍預(yù)計在總量程之內(nèi),可選用鉑電阻傳感器。較窄的量程通常要求傳感器必須具有相當(dāng)高的基本電阻,以便獲得足夠大的電阻變化。熱敏電阻所提供的足夠大的電阻變化使得這些敏感元件非常適用于窄的測量范圍。如果測量范圍相當(dāng)大時,熱電偶更適用。最好將冰點也包括在此范圍內(nèi),因為熱電偶的分度表是以此溫度為基準的。已知范圍內(nèi)的傳感器線性也可作為選擇傳感器的附加條件。
評論
查看更多