0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

干貨 | GaN在開關(guān)電源設計中的應用

創(chuàng)伙伴 ? 來源:YXQ ? 2019-08-01 15:01 ? 次閱讀

隨著工藝的進步和缺陷率的不斷降低,GaN在交直流電力轉(zhuǎn)換、改變電壓電平、并且以一定數(shù)量的函數(shù)確??煽侩娏?a target="_blank">電子電源中的優(yōu)勢越來越明顯。電源設計人員正在重新思考電路的設計,試圖尋找能充分發(fā)揮全新GaN晶體管潛能又能避免負面影響的方法來創(chuàng)造電源系統(tǒng)。思考這類問題時通常的思路是在現(xiàn)有組件中尋找解決方案—GaN開關(guān),Si開關(guān)驅(qū)動器,高速開關(guān)控制器,以及功率電感器、變壓器和電容器等總體設計中的部件。生產(chǎn)電源產(chǎn)品集成電路(IC) 制造商如果能用共同設計的器件提供系統(tǒng)級解決方案,甚至在模塊封裝中集成多個芯片,就能夠大大提高電源設計可能性。

對于電源設計人員來說,驅(qū)動eGaN器件需要考慮的因素:

(1)低閾值電壓

GaN FET 的閾值電壓一般低于1.5V ,最小值低至0.7V ,相比很多MOSFETs低,但它隨溫度幾乎平緩變化。低閾值電壓帶來的問題:

1)在實際電路中柵極驅(qū)動路徑上會存在漏電感以及柵電容,這些寄生因素在開關(guān)瞬態(tài)會引起振蕩, 一些小幅度的電壓上升通常可能會被柵極檢測到, 導致誤開啟甚至穿通。

2)最常用到的柵驅(qū)動電路是推拉輸出結(jié)構(gòu)( 如圖表4),利用P型FET作為高端, N型FET作為低端。當驅(qū)動功率MOS 時,通常將一個二極管并聯(lián)在柵極電阻上來控制開啟速度而不影響關(guān)斷速度。但是,對于GaN來說,此電路不能使用。因為二極管的正向壓降可能會大于閾值電壓的最小值,阻斷GaN FET 的關(guān)斷。

3)由于雜散電感的存在,它與寄生的電容在柵極會引起較大的噪聲電壓,導致誤開啟。

圖4.傳統(tǒng)MOSFET 柵驅(qū)動結(jié)構(gòu)

(2)柵源電壓上限要求嚴格:VGS(MAX)=6V。一方面, VGS必須被設定在5.5V 以下來預留0.5V 的安全余量。另一方面,從Rds(ON) 與VGS曲線看出,在VGS=4.5-5.5V 時, Rds(ON)可以達到最小值,意味著降低傳導損耗。綜合考慮,將VGS設置在5V。柵源電壓設計要求帶來的問題:必須對柵源電壓進行嚴格控制, 避免損壞GaN FET功率管柵極,適用于MOSFETs驅(qū)動的普通偏置不能被直接使用。

圖表5 自舉箝位技術(shù)

在自舉電路中進行箝位設計(如圖表5),可以保證VGS低于6V。開啟驅(qū)動過程中的充電,可能會引起一個欠阻尼震蕩,從而引起過沖, 導致?lián)p壞。所以可以通過限制充電速度的方法,及串聯(lián)電阻在充電支路,從而得到克服。

(3)GaN FET 反向?qū)?/p>

GaN FET 的IV 轉(zhuǎn)移特性曲線如圖表6所示,從圖可以看出GaN FET 可以反向?qū)ā7聪驅(qū)ㄌ匦源媪似胀∕OSFET 體二極管的續(xù)流作用,但其較高的反向?qū)▔航狄鹆诵碌膯栴}。

圖表6 GaN FET 的IV 轉(zhuǎn)移特性曲線

問題1:反向?qū)▔航递^大。如圖表7所示,當?shù)投薋ET 導通時, VCC通過自舉二極管對自舉電容進行充電,充電后的電容為高端FET提供偏置,該技術(shù)運用到GaN FET 時,自舉電容兩端的電壓:Vboot=Vcc-VF+Vsd _ Q1。VF為二極管壓降,VCC通常為 5V,由于Vsd_Q1會隨著負載電流的增加而迅速增加, 使得Vboot的值會很快上升至超出最大電壓6V ,高端FET受損。

圖表7.自舉技術(shù)驅(qū)動高端FET

問題2:反向?qū)ㄔ斐奢^大損耗, 降低了系統(tǒng)效率。根據(jù)圖表6所示的GaN FET 的IV 轉(zhuǎn)移特性,反向?qū)〞r柵源電壓決定了反向?qū)ǖ拈_啟程度, 柵源電壓的負向過沖造成反向?qū)ǖ淖杩乖龃?,如此造成大負載電流時的功率管熱損耗非常可觀,所以需要負向過沖盡量小。

(4) EMI 問題

由于GaN可以工作在較高的頻率, 所以存在較大的dV/dt ,。這將會引起嚴重的EMI 問題??梢圆捎脭U頻或者柵極分段驅(qū)動的方式,進行改善。同樣該方法可以解決問題(1)中提及的柵極振蕩引起的誤動作問題。

針對上述問題,IC供應商提供的解決方案是將上述提到的FET,驅(qū)動器以及為開關(guān)提供支持的無源器件封裝在同一個模塊中(圖表8所示),這樣將會極大地減少SMPS的大小和組件數(shù)量。物理尺寸的減少也將意味著系統(tǒng)制造成本的降低,以及基于GaN設計的高效率。

圖表8集成GaN開關(guān)柵極驅(qū)動器模塊

降低設計復雜度與縮小解決方案尺寸同樣重要。一個驅(qū)動器開關(guān)模塊將芯片間的連接線減小到盡可能短的長度,從而最大限度地縮短了延遲時間,并減少了那些使開關(guān)脈沖輸出失真的寄生阻抗。一款設計良好的模塊將大大減少多芯片設計的寄生因子,其中的某些因子會減少一個數(shù)量級,甚至更多。

提供系統(tǒng)級解決方案的另外一個重要因素是控制器,這款器件必須在GaN支持的高頻率下運行,必須實時地對輸出電壓的變化做出響應。其時間分辨率也必須符合精確脈寬要求,以最大限度地減小死區(qū)時間內(nèi)的傳導損耗。幸運的是,現(xiàn)有的數(shù)字電源控制器可以滿足這些要求,從而提供可被用于系統(tǒng)其它位置的額外性能和I/O功能。Ti提供數(shù)字電源控制方面的全面專業(yè)知識,這些知識與公司電源技術(shù)一起,提供針對GaN穩(wěn)壓和受控開關(guān)的系統(tǒng)級解決方案。

另外還需要針對基于GaN設計的磁性元件設計,因為目前磁性元件仍然在硅材料所實現(xiàn)的頻率下工作。電源制造商和GaN研究機構(gòu)通力協(xié)作,隨著基于GaN的電源組件不斷上市,并且供應量在不斷的增加,磁性元件供應商將會收到客戶的大量請求,要求他們引入支持這項技術(shù)的組件。一旦條件成熟,業(yè)界就能夠在很多電源應用中充分利用GaN所帶來的優(yōu)勢。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 開關(guān)電源
    +關(guān)注

    關(guān)注

    6423

    文章

    8197

    瀏覽量

    477766
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    1883

    瀏覽量

    71031

原文標題:雷軍:他見過兩個江湖

文章出處:【微信號:chuanghuoban,微信公眾號:創(chuàng)伙伴】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    光耦開關(guān)電源的應用及選型推薦——KL101X系列

    現(xiàn)代電子設備開關(guān)電源(Switch Mode Power Supply,SMPS)以其高效能和緊湊性成為電源設計的主流選擇。光耦
    的頭像 發(fā)表于 07-04 10:03 ?217次閱讀
    光耦<b class='flag-5'>在</b><b class='flag-5'>開關(guān)電源</b><b class='flag-5'>中</b>的應用及選型推薦——KL101X系列

    干貨推薦!開關(guān)電源該如何配置電感?

    ISAT時,電感飽和,感值下降,紋波電流、紋波電壓增大,效率降低。因此,電感的ISAT和IRMS的最小值應高于開關(guān)電源額定輸出電流的1.3以上。 四、電感類型選取 明確了最小電感值的計算和電感參數(shù)
    發(fā)表于 06-24 10:38

    MOSFET開關(guān)電源的作用

    MOSFET作為開關(guān)元件,開關(guān)電源需要頻繁地切換兩種狀態(tài):導通和截止,以控制電流的通斷。這種切換過程對于電源的穩(wěn)定輸出至關(guān)重要。
    的頭像 發(fā)表于 04-25 17:05 ?1266次閱讀
    MOSFET<b class='flag-5'>在</b><b class='flag-5'>開關(guān)電源</b><b class='flag-5'>中</b>的作用

    光耦開關(guān)電源的作用有哪些

    光耦作為一種光電轉(zhuǎn)換器件,廣泛應用于開關(guān)電源。它可以隔離控制信號與被控信號,起到保護電路的作用,同時還具有隔離電氣噪聲、防止電氣干擾等作用。本文將詳細討論光耦開關(guān)電源
    的頭像 發(fā)表于 03-29 16:37 ?1340次閱讀

    干貨 | 如何降低開關(guān)電源輸出紋波與噪聲

    如何降低開關(guān)電源輸出紋波與噪聲
    的頭像 發(fā)表于 03-12 19:49 ?1077次閱讀

    開關(guān)電源什么是負載調(diào)整率?如何去測?

    開關(guān)電源什么是負載調(diào)整率?如何去測? 負載調(diào)整率是指開關(guān)電源負載變化時穩(wěn)定輸出電壓的能力。負載調(diào)整率越小,開關(guān)電源輸出電壓在負載變化時的
    的頭像 發(fā)表于 01-19 14:56 ?2392次閱讀

    濾波器開關(guān)電源的應用

    濾波器開關(guān)電源的應用 開關(guān)電源是一種將輸入電壓轉(zhuǎn)換為所需輸出電壓的電源,它通過快速開關(guān)和控制
    的頭像 發(fā)表于 01-11 15:59 ?861次閱讀

    開關(guān)電源EMC設計的常見誤區(qū)有哪些

    開關(guān)電源電磁兼容(EMC)設計是確保開關(guān)電源工作過程不會對周圍電子設備產(chǎn)生干擾,同時能夠抵抗來自外部的電磁干擾。然而,實際設計過程
    的頭像 發(fā)表于 12-30 16:41 ?775次閱讀

    什么是開關(guān)電源EMC

    開關(guān)電源電磁兼容(EMC)是指開關(guān)電源工作過程,對周圍電子設備產(chǎn)生的電磁干擾信號以及自身受到的電磁干擾信號的控制能力。開關(guān)電源作為一種高
    的頭像 發(fā)表于 12-30 15:51 ?1868次閱讀
    什么是<b class='flag-5'>開關(guān)電源</b>EMC

    開關(guān)電源電磁兼容設計的布局與布線技巧

    開關(guān)電源工作過程中會產(chǎn)生電磁干擾(EMI),這種干擾信號會對周圍的電子設備產(chǎn)生不良影響。為了減小電磁干擾,開關(guān)電源的布局與布線設計至關(guān)重要。本文將對開關(guān)電源電磁兼容設計
    的頭像 發(fā)表于 12-30 15:25 ?560次閱讀

    高頻開關(guān)電源與交流開關(guān)電源的區(qū)別有哪些?

    高頻開關(guān)電源與交流開關(guān)電源的區(qū)別有哪些? 高頻開關(guān)電源與交流開關(guān)電源是兩種不同類型的電源,它們
    的頭像 發(fā)表于 11-16 11:22 ?1540次閱讀

    開關(guān)電源的硬開關(guān)和軟開關(guān)介紹

    電子發(fā)燒友網(wǎng)站提供《開關(guān)電源的硬開關(guān)和軟開關(guān)介紹.doc》資料免費下載
    發(fā)表于 11-14 09:49 ?1次下載
    <b class='flag-5'>開關(guān)電源</b><b class='flag-5'>中</b>的硬<b class='flag-5'>開關(guān)</b>和軟<b class='flag-5'>開關(guān)</b>介紹

    什么是開關(guān)電源效率?開關(guān)電源測試系統(tǒng)ate如何測試?

    效地利用電能。 開關(guān)電源測試系統(tǒng)ATE(Automatic Test Equipment)是用于測量和評估開關(guān)電源性能的測試設備。ATE可以根據(jù)開關(guān)電源的規(guī)格和性能要求,通過多種測試方法來評估其效率。
    的頭像 發(fā)表于 11-10 15:29 ?1306次閱讀

    PLC開關(guān)電源的應用

    電子發(fā)燒友網(wǎng)站提供《PLC開關(guān)電源的應用.doc》資料免費下載
    發(fā)表于 11-03 09:32 ?1次下載
    PLC<b class='flag-5'>在</b><b class='flag-5'>開關(guān)電源</b><b class='flag-5'>中</b>的應用

    線性電源開關(guān)電源門禁應用的比較

    電子發(fā)燒友網(wǎng)站提供《線性電源開關(guān)電源門禁應用的比較 .pdf》資料免費下載
    發(fā)表于 10-27 11:18 ?0次下載
    線性<b class='flag-5'>電源</b>和<b class='flag-5'>開關(guān)電源</b><b class='flag-5'>在</b>門禁應用<b class='flag-5'>中</b>的比較