據(jù)外媒報(bào)道稱,谷歌近日推出了一個名叫 NSL 的神經(jīng)結(jié)構(gòu)學(xué)習(xí)框架,此框架是一個開源架構(gòu),開發(fā)其目的是為了對帶有圖形和結(jié)構(gòu)化數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)展開訓(xùn)練。據(jù)消息稱,2019谷歌開發(fā)者大會將于9 月10日和11日于上海舉辦,想了解更多谷歌技術(shù)方面的知識,可以鎖定此次科技盛宴。
神經(jīng)結(jié)構(gòu)學(xué)習(xí)框架(NSL)的作用很大,它可以制作計(jì)算機(jī)視覺模型、執(zhí)行自然語言處理(NLP)、從醫(yī)療記錄或知識圖等圖形數(shù)據(jù)集中運(yùn)行預(yù)測,還可以與 TensorFlow 機(jī)器學(xué)習(xí)平臺配合使用,適用于有經(jīng)驗(yàn)或缺乏經(jīng)驗(yàn)的機(jī)器學(xué)習(xí)從業(yè)者。另外,NSL還可以監(jiān)督、半監(jiān)督、或無監(jiān)督地學(xué)習(xí),對訓(xùn)練期間的圖形信號進(jìn)行正規(guī)化的建模。
在某些情況下,開發(fā)者甚至用不到五行以上的代碼。TensorFlow工程師都發(fā)博客表示過:“在訓(xùn)練期間使用結(jié)構(gòu)化信號,能夠讓開發(fā)者獲得更高的模型精度,尤其是數(shù)據(jù)量相對較小的時候”。
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。
舉報(bào)投訴
-
谷歌
-
神經(jīng)網(wǎng)絡(luò)
-
開源
相關(guān)推薦
多個神經(jīng)網(wǎng)絡(luò)層組成,每個層都包含大量的神經(jīng)元和權(quán)重參數(shù)。 傳統(tǒng)機(jī)器學(xué)習(xí) :模型規(guī)模相對較小,參數(shù)數(shù)量通常只有幾千到幾百萬個,模型
發(fā)表于 10-23 15:01
?296次閱讀
RISC-V如何支持不同的AI和機(jī)器學(xué)習(xí)框架和庫?還請壇友們多多指教一下。
發(fā)表于 10-10 22:24
這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了
發(fā)表于 08-12 11:21
在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
發(fā)表于 08-01 14:31
?499次閱讀
當(dāng)然,PyTorch是一個廣泛使用的深度學(xué)習(xí)框架,它提供了許多預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型。 PyTorch中的
發(fā)表于 07-11 09:59
?602次閱讀
理解機(jī)器學(xué)習(xí)中的訓(xùn)練集、驗(yàn)證集和測試集,是掌握機(jī)器學(xué)習(xí)核心概念和流程的重要一步。這三者不僅構(gòu)成了模型學(xué)習(xí)
發(fā)表于 07-10 15:45
?2921次閱讀
深度學(xué)習(xí)和自然語言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度學(xué)習(xí)簡介 深度
發(fā)表于 07-05 09:47
?749次閱讀
人工神經(jīng)網(wǎng)絡(luò)(ANN)與傳統(tǒng)機(jī)器學(xué)習(xí)模型之間的不同,包括其原理、數(shù)據(jù)處理能力、學(xué)習(xí)方法、適用場景及未來發(fā)展趨勢等方面,以期為讀者提供一
發(fā)表于 07-04 14:08
?919次閱讀
。 引言 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支,它通過模擬人腦神經(jīng)網(wǎng)絡(luò)的
發(fā)表于 07-02 14:45
?1003次閱讀
深度學(xué)習(xí)作為人工智能領(lǐng)域的一個重要分支,在過去十年中取得了顯著的進(jìn)展。在構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型的過程中,深度學(xué)習(xí)
發(fā)表于 07-02 14:04
?848次閱讀
提供商外,英偉達(dá)還成立了專業(yè)的人工智能研究實(shí)驗(yàn)室。
不過,機(jī)器學(xué)習(xí)軟件公司 Mipsology 的首席執(zhí)行官兼聯(lián)合創(chuàng)始人盧多維奇?拉祖爾 (Ludovic Larzul) 表示,GPU 還存在著一些缺陷
發(fā)表于 03-21 15:19
據(jù)了解,在此款“社交學(xué)習(xí)”框架中,“學(xué)生模型”可向多位已處理指定任務(wù)的“教師模型”請教各類應(yīng)對方案,研究團(tuán)隊(duì)主要通過開展“垃圾短信檢測”、“解決小學(xué)數(shù)學(xué)題”及“根據(jù)文本回答問題”等多項(xiàng)試驗(yàn),以衡量此框架的運(yùn)作效果。
發(fā)表于 03-11 11:36
?863次閱讀
谷歌模型框架通常指的是谷歌開發(fā)的用于機(jī)器學(xué)習(xí)和人工智能的軟件框架,其中最著名的是TensorFl
發(fā)表于 03-01 16:25
?771次閱讀
機(jī)器學(xué)習(xí)(ML)和人工智能(AI)不再局限于高端服務(wù)器或云平臺。得益于集成電路(IC)和軟件技術(shù)的新發(fā)展,在微型控制器和微型計(jì)算機(jī)上實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法和深度
發(fā)表于 02-29 18:59
?724次閱讀
谷歌模型框架(Google Model Framework)并不是一個特定的框架,而是指谷歌開發(fā)
發(fā)表于 02-29 18:11
?1380次閱讀
評論