0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

采用采用反激轉(zhuǎn)換器如何消除米勒效應(yīng)

牽手一起夢 ? 來源:網(wǎng)絡(luò)整理 ? 作者:佚名 ? 2020-01-03 16:56 ? 次閱讀

設(shè)計電源時,工程師常常會關(guān)注與MOSFET導(dǎo)通損耗有關(guān)的效率下降問題。在出現(xiàn)較大RMS電流的情況下, 比如轉(zhuǎn)換器在非連續(xù)導(dǎo)電模式(DCM)下工作時,若選擇Rds(on)較小的MOSFET,芯片尺寸就會較大,從而輸入電容也較大。也就是說,導(dǎo)通損耗的減小將會造成較大的輸入電容和控制器較大的功耗。當(dāng)開關(guān)頻率提高時,問題將變得更為棘手。

圖1 MOSFET導(dǎo)通和關(guān)斷時的典型柵電流

圖2 MOSFET中的寄生電容

圖3 典型MOSFET的柵電荷

圖4 基于專用控制器的簡單QR轉(zhuǎn)換器

圖5 ZVS技術(shù)消除米勒效應(yīng)

MOSFET導(dǎo)通和關(guān)斷時的典型柵電流如圖1所示。在導(dǎo)通期間,流經(jīng)控制器Vcc引腳的峰值電流對Vcc充電;在關(guān)斷期間,存儲的電流流向芯片的接地端。如果在相應(yīng)的面積上積分,即進(jìn)行篿gate(t)dt,則可得到驅(qū)動晶體管的柵電荷Qg 。將其乘以開關(guān)頻率Fsw,就可得到由控制器Vcc提供的平均電流。因此,控制器上的總開關(guān)功率(擊穿損耗不計)為:

Pdrv = Fsw×Qg×Vcc (1)

如果使用開關(guān)速度為100kHz的12V控制器驅(qū)動?xùn)烹姾蔀?00nC的MOSFET,驅(qū)動器的功耗即為100nC×100kHz×12V=10mA×12V=120mW。

MOSFET的物理結(jié)構(gòu)中有多種寄生單元,其中電容的作用十分關(guān)鍵,如圖2所示。產(chǎn)品數(shù)據(jù)表中的三個參數(shù)采取如下定義:當(dāng)源-漏極短路時,令Ciss = Cgs + Cgd;當(dāng)柵-源極短路時,令Coss = Cds + Cgd;Crss = Cgd。

驅(qū)動器實際為柵-源極連接。當(dāng)斜率為dt 的電壓V施加到電容C上時(如驅(qū)動器的輸出電壓),將會增大電容內(nèi)的電流:

I=C×dV/dt (2)

因此,向MOSFET施加電壓時,將產(chǎn)生輸入電流Igate = I1 + I2,如圖2所示。在右側(cè)電壓節(jié)點上利用式(2),可得到:

I1=Cgd×d(Vgs-Vds)/dt=Cgd×(dVgs/dt-dVds/dt) (3)

I2=Cgs×d(Vgs/dt) (4)

如果在MOSFET上施加?xùn)?源電壓Vgs,其漏-源電壓Vds 就會下降(即使是呈非線性下降)。因此,可以將連接這兩個電壓的負(fù)增益定義為:

Av=-dVds/dVgs (5)

將式(5)代入式(3)和式(4)中,并分解 dVgs/dt,可得:

I1=Cgd×dVgs/dt×(1-dVds/dVgs)=Cgd×dVgs/dt×(1-Av) (6)

在轉(zhuǎn)換(導(dǎo)通或關(guān)斷)過程中,柵-源極的總等效電容Ceq為:

Igate=(Cgd×(1-Av)+Cgs)×dVgs/dt=Ceq×dVgs/dt (7)

式中(1-Av)這一項被稱作米勒效應(yīng),它描述了電子器件中輸出和輸入之間的電容反饋。當(dāng)柵-漏電壓接近于零時,將會產(chǎn)生米勒效應(yīng)。典型功率MOSFET的柵電荷如圖3所示,該圖通過用恒定電流對柵極充電并對柵-源電壓進(jìn)行觀察而得。根據(jù)式(6),當(dāng)Ciss突然增大時,電流持續(xù)流過。但由于電容急劇增加,而相應(yīng)的電壓升高dVgs卻嚴(yán)重受限,因此電壓斜率幾乎為零,如圖3中的平坦區(qū)域所示。

圖3也顯示出降低在轉(zhuǎn)換期間Vds(t)開始下降時的點的位置,有助于減少平坦區(qū)域效應(yīng)。Vds=100V時的平坦區(qū)域?qū)挾纫萔ds=400V時窄,曲線下方的面積也隨之減小。因此,如果能在Vds等于零時將MOSFET導(dǎo)通,即利用ZVS技術(shù),就不會產(chǎn)生米勒效應(yīng)。

在準(zhǔn)諧振模式(QR)中采用反激轉(zhuǎn)換器是消除米勒效應(yīng)較經(jīng)濟(jì)的方法, 它無需在下一個時鐘周期內(nèi)使開關(guān)處于導(dǎo)通狀態(tài),只要等漏極上的自然振蕩將電壓逐漸降至接近于零。與此同時,通過專用引腳可以檢測到控制器再次啟動了晶體管。通過在開關(guān)打開處反射的足夠的反激電壓(N×[Vout+Vf]),即可實現(xiàn)ZVS操作,這通常需要800V(通用范圍)的高壓MOSFET?;?a href="http://ttokpm.com/tags/安森美/" target="_blank">安森美的NCP1207的QR轉(zhuǎn)換器如圖4所示,它可以直接使用高壓電源供電。該轉(zhuǎn)換器在ZVS下工作時的柵-源電壓和漏極波形如圖5所示。

總之,如果需要Qg較大的MOSFET,最好使反激轉(zhuǎn)換器在ZVS下工作,這樣可以減少平均驅(qū)動電流帶來的不利影響。這一技術(shù)也廣泛應(yīng)用于諧振轉(zhuǎn)換器中。

責(zé)任編輯:gt

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    452

    文章

    50206

    瀏覽量

    420946
  • 轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    27

    文章

    8601

    瀏覽量

    146711
  • MOSFET
    +關(guān)注

    關(guān)注

    143

    文章

    7039

    瀏覽量

    212482
收藏 人收藏

    評論

    相關(guān)推薦

    轉(zhuǎn)換器的工作過程講解

    轉(zhuǎn)換器的工作過程講解;開關(guān)器件的工作在轉(zhuǎn)換器的整個工作過程中起著重要的作用。
    的頭像 發(fā)表于 05-23 09:49 ?4055次閱讀
    <b class='flag-5'>反</b><b class='flag-5'>激</b><b class='flag-5'>轉(zhuǎn)換器</b>的工作過程講解

    轉(zhuǎn)換器波形受到漏電感的影響

    漏電感帶來的阻尼效應(yīng)非常小。但瞬態(tài)仿真預(yù)示輸出阻尼隨漏電感增加而振蕩。由于現(xiàn)有文獻(xiàn)中的公式?jīng)]有反映出這影響,有必要采用新的模型,本文將作說明。
    的頭像 發(fā)表于 04-04 08:58 ?1.1w次閱讀
    <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>波形受到漏電感的影響

    電氣隔離電源設(shè)計:轉(zhuǎn)換器的應(yīng)用實例

    電氣隔離電源被廣泛用于各種應(yīng)用的原因有很多。在某些電路上,出于安全考慮,必須實施電氣隔離。在其他電路中,則會使用功能性隔離來攔截信號受到的干擾。 電氣隔離電源設(shè)計一般采用轉(zhuǎn)換器。
    的頭像 發(fā)表于 12-24 14:28 ?3940次閱讀
    電氣隔離電源設(shè)計:<b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>的應(yīng)用實例

    有源復(fù)位轉(zhuǎn)換器參考設(shè)計

    `描述PMP7895 是一種有源復(fù)位轉(zhuǎn)換器參考設(shè)計。此設(shè)計接受 12V+/-10% 輸入電壓,可實現(xiàn) 12V 輸出,并且能夠為負(fù)載提供 1A 電流。特性有源復(fù)位
    發(fā)表于 03-23 17:02

    絕緣型轉(zhuǎn)換器的基礎(chǔ):轉(zhuǎn)換器的特征

    本設(shè)計事例使用稱為式的變壓方式。在這里,將說明方式的基本電路和特征。
    發(fā)表于 11-27 17:01

    STEVAL-ISA118V1,演示板采用Viper16離線功率轉(zhuǎn)換器采用式拓?fù)浣Y(jié)構(gòu),抖動固定頻率

    STEVAL-ISA118V1,演示板采用Viper16離線功率轉(zhuǎn)換器,采用式拓?fù)浣Y(jié)構(gòu),抖動固定頻率。 VIPer16可以在有或沒有輔助
    發(fā)表于 11-01 09:06

    式和式DC-DC轉(zhuǎn)換器介紹

      隔離式DC-DC轉(zhuǎn)換器在工業(yè)現(xiàn)場總線,工業(yè)自動化等上面應(yīng)用非常廣泛,它能夠提供電流隔離,抵抗噪聲和提高安全性。隔離式DC-DC轉(zhuǎn)換器采用變壓或光耦合
    發(fā)表于 12-09 15:25

    有源鉗位轉(zhuǎn)換器及電路圖

    有源鉗位轉(zhuǎn)換器及電路圖 采用有源鉗位技術(shù)的轉(zhuǎn)換
    發(fā)表于 02-19 11:17 ?1.2w次閱讀
    有源鉗位<b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>及電路圖

    有源鉗位轉(zhuǎn)換器-正轉(zhuǎn)換器

    有源鉗位轉(zhuǎn)換器-正轉(zhuǎn)換器
    發(fā)表于 02-19 11:23 ?2239次閱讀
    有源鉗位<b class='flag-5'>反</b><b class='flag-5'>激</b><b class='flag-5'>轉(zhuǎn)換器</b>-正<b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>

    在MOSFET器件的功率問題中如何采用轉(zhuǎn)換器消除米勒效應(yīng)

    設(shè)計電源時,工程師常常會關(guān)注與MOSFET導(dǎo)通損耗有關(guān)的效率下降問題。在出現(xiàn)較大RMS電流的情況下, 比如轉(zhuǎn)換器在非連續(xù)導(dǎo)電模式(DCM)下工作時,若選擇Rds(on)較小的MOSFET,芯片尺寸
    的頭像 發(fā)表于 01-13 07:59 ?1699次閱讀

    無需光耦合轉(zhuǎn)換器

    轉(zhuǎn)換器通常用于需要對電源電壓進(jìn)行電氣隔離并且傳輸功率相對較低的應(yīng)用中。輸出功率低于60 W時通常采用
    的頭像 發(fā)表于 07-02 10:21 ?3696次閱讀
    無需光耦合<b class='flag-5'>器</b>的<b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>

    轉(zhuǎn)換器簡化隔離式電源設(shè)計

    轉(zhuǎn)換器簡化隔離式電源設(shè)計
    發(fā)表于 03-19 00:40 ?8次下載
    <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>簡化隔離式電源設(shè)計

    轉(zhuǎn)換器電路的基本器件

    轉(zhuǎn)換器式變壓、開關(guān)管、整流和濾波
    的頭像 發(fā)表于 05-21 10:14 ?2803次閱讀
    <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>電路的基本器件

    轉(zhuǎn)換器的計算公式

    要想學(xué)會轉(zhuǎn)換器的計算,我們需要明白存儲和傳輸能量就是轉(zhuǎn)換器的工作原理。
    的頭像 發(fā)表于 05-23 13:28 ?5018次閱讀
    <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>的計算公式

    如何設(shè)計CCM轉(zhuǎn)換器

    本期,我們將聚焦于 CCM 轉(zhuǎn)換器設(shè)計 探討?CCM 轉(zhuǎn)換器 在中等功耗隔離應(yīng)用中的
    的頭像 發(fā)表于 11-08 10:12 ?89次閱讀
    如何設(shè)計CCM<b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>轉(zhuǎn)換器</b>