0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

開源機(jī)器學(xué)習(xí)平臺(tái)TensorFlow的更新內(nèi)容

汽車玩家 ? 來源:開源中國 ? 作者:xplanet ? 2020-03-15 14:53 ? 次閱讀

TensorFlow 2.2.0-rc0已發(fā)布,據(jù)官方介紹,TensorFlow 是一個(gè)采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計(jì)算的開源軟件庫。節(jié)點(diǎn)(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點(diǎn)間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺(tái)上展開計(jì)算,例如臺(tái)式計(jì)算機(jī)中的一個(gè)或多個(gè)CPU(或GPU),服務(wù)器,移動(dòng)設(shè)備等等。TensorFlow 最初由Google大腦小組(隸屬于Google機(jī)器智能研究機(jī)構(gòu))的研究員和工程師們開發(fā)出來,用于機(jī)器學(xué)習(xí)和深度神經(jīng)網(wǎng)絡(luò)方面的研究,但這個(gè)系統(tǒng)的通用性使其也可廣泛用于其他計(jì)算領(lǐng)域。

更新內(nèi)容如下:

主要特性和改進(jìn)

將字符串張量的標(biāo)量類型從std::string替換為tensorflow::tstring

TF 2 的新 Profiler,用于 CPU/GPU/TPU。它提供設(shè)備和主機(jī)性能分析,包括輸入管道和 TF Ops。

推薦使用 SWIG,而是使用 pybind11 將 C++ 函數(shù)導(dǎo)出到 Python,這是棄用 Swig 所作努力的一部分。

tf.distribute:

tf.keras:

tf.lite:

XLA

將 NVIDIA NCCL 更新到 2.5.7-1,以獲得更好的性能和性能調(diào)整。

支持在 float16 中減少梯度。

所有實(shí)驗(yàn)的支持都減少了梯度壓縮,以允許使用反向路徑計(jì)算進(jìn)行重疊梯度聚合

通過使用新添加的 tf.keras.layers.experimental.SyncBatchNormalization 層,添加了對(duì)全局同步 BatchNormalization 的支持。該層將在參與同步訓(xùn)練的所有副本之間同步 BatchNormalization 統(tǒng)計(jì)信息。

使用 tf.distribute.experimental.MultiWorkerMirroredStrategy 提高 GPU 多工分布式培訓(xùn)的性能

可以通過覆蓋 Model.train_step 將自定義訓(xùn)練邏輯與 Model.fit 結(jié)合使用。

輕松編寫最新的培訓(xùn)循環(huán),而不必?fù)?dān)心 Model.fit 為你處理的所有功能(分發(fā)策略,回調(diào),數(shù)據(jù)格式,循環(huán)邏輯等)

Model.fit的主要改進(jìn):

現(xiàn)在,SavedModel 格式支持所有 Keras 內(nèi)置層(包括指標(biāo),預(yù)處理層和有狀態(tài) RNN 層)

默認(rèn)情況下啟用 TFLite 實(shí)驗(yàn)性新轉(zhuǎn)換器。

XLA 現(xiàn)在可以在 Windows 上構(gòu)建并運(yùn)行。所有預(yù)構(gòu)建的軟件包都隨附有 XLA。

可以在 CPU 和 GPU 上使用“編譯或拋出異?!闭Z義為 tf.function 啟用 XLA。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8349

    瀏覽量

    132312
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    328

    瀏覽量

    60473
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    使用機(jī)器學(xué)習(xí)和NVIDIA Jetson邊緣AI和機(jī)器人平臺(tái)打造機(jī)器人導(dǎo)盲犬

    Selin Alara Ornek 是一名富有遠(yuǎn)見的高中生。她使用機(jī)器學(xué)習(xí)和 NVIDIA Jetson 邊緣 AI 和機(jī)器人平臺(tái),為視障人士打造了機(jī)器人導(dǎo)盲犬。 該項(xiàng)目名為 I
    的頭像 發(fā)表于 11-08 10:05 ?167次閱讀

    TensorFlow是什么?TensorFlow怎么用?

    TensorFlow是由Google開發(fā)的一個(gè)開源深度學(xué)習(xí)框架,它允許開發(fā)者方便地構(gòu)建、訓(xùn)練和部署各種復(fù)雜的機(jī)器學(xué)習(xí)模型。
    的頭像 發(fā)表于 07-12 16:38 ?534次閱讀

    使用TensorFlow進(jìn)行神經(jīng)網(wǎng)絡(luò)模型更新

    使用TensorFlow進(jìn)行神經(jīng)網(wǎng)絡(luò)模型的更新是一個(gè)涉及多個(gè)步驟的過程,包括模型定義、訓(xùn)練、評(píng)估以及根據(jù)新數(shù)據(jù)或需求進(jìn)行模型微調(diào)(Fine-tuning)或重新訓(xùn)練。下面我將詳細(xì)闡述這個(gè)過程,并附上相應(yīng)的TensorFlow代碼
    的頭像 發(fā)表于 07-12 11:51 ?310次閱讀

    tensorflow和pytorch哪個(gè)更簡單?

    TensorFlow和PyTorch都是用于深度學(xué)習(xí)機(jī)器學(xué)習(xí)開源框架。TensorFlow
    的頭像 發(fā)表于 07-05 09:45 ?702次閱讀

    tensorflow和pytorch哪個(gè)好

    :2015年由Google Brain團(tuán)隊(duì)發(fā)布。 語言支持 :主要使用Python,也支持C++、Java等。 設(shè)計(jì)哲學(xué) :TensorFlow是一個(gè)端到端的機(jī)器學(xué)習(xí)平臺(tái),支持從研究
    的頭像 發(fā)表于 07-05 09:42 ?603次閱讀

    tensorflow簡單的模型訓(xùn)練

    在本文中,我們將詳細(xì)介紹如何使用TensorFlow進(jìn)行簡單的模型訓(xùn)練。TensorFlow是一個(gè)開源機(jī)器學(xué)習(xí)庫,廣泛用于各種
    的頭像 發(fā)表于 07-05 09:38 ?471次閱讀

    keras模型轉(zhuǎn)tensorflow session

    和訓(xùn)練深度學(xué)習(xí)模型。Keras是基于TensorFlow、Theano或CNTK等底層計(jì)算框架構(gòu)建的。TensorFlow是一個(gè)開源機(jī)器
    的頭像 發(fā)表于 07-05 09:36 ?437次閱讀

    如何使用Tensorflow保存或加載模型

    TensorFlow是一個(gè)廣泛使用的開源機(jī)器學(xué)習(xí)庫,它提供了豐富的API來構(gòu)建和訓(xùn)練各種深度學(xué)習(xí)模型。在模型訓(xùn)練完成后,保存模型以便將來使用
    的頭像 發(fā)表于 07-04 13:07 ?1168次閱讀

    TensorFlow的定義和使用方法

    TensorFlow是一個(gè)由谷歌人工智能團(tuán)隊(duì)谷歌大腦(Google Brain)開發(fā)和維護(hù)的開源機(jī)器學(xué)習(xí)庫。它基于數(shù)據(jù)流編程(dataflow programming)的概念,將復(fù)雜的
    的頭像 發(fā)表于 07-02 14:14 ?644次閱讀

    TensorFlow與PyTorch深度學(xué)習(xí)框架的比較與選擇

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個(gè)重要分支,在過去十年中取得了顯著的進(jìn)展。在構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型的過程中,深度學(xué)習(xí)框架扮演著至關(guān)重要的角色。TensorFlow和PyTorch是目前最受
    的頭像 發(fā)表于 07-02 14:04 ?846次閱讀

    英飛凌旗下Imagimob更新Studio平臺(tái),引入全新Graph UX界面

    英飛凌科技旗下領(lǐng)先的邊緣設(shè)備AI/ML開發(fā)平臺(tái)提供商Imagimob,近日對(duì)其旗艦產(chǎn)品Imagimob Studio進(jìn)行了重大更新。此次更新引入了全新的Graph UX界面,使得機(jī)器
    的頭像 發(fā)表于 03-12 10:04 ?638次閱讀

    谷歌模型框架是什么軟件?谷歌模型框架怎么用?

    谷歌模型框架通常指的是谷歌開發(fā)的用于機(jī)器學(xué)習(xí)和人工智能的軟件框架,其中最著名的是TensorFlowTensorFlow是一個(gè)開源
    的頭像 發(fā)表于 03-01 16:25 ?770次閱讀

    基于TensorFlow和Keras的圖像識(shí)別

    TensorFlow和Keras最常見的用途之一是圖像識(shí)別/分類。通過本文,您將了解如何使用Keras達(dá)到這一目的。定義如果您不了解圖像識(shí)別的基本概念,將很難完全理解本文的內(nèi)容。因此在正文開始之前
    的頭像 發(fā)表于 01-13 08:27 ?754次閱讀
    基于<b class='flag-5'>TensorFlow</b>和Keras的圖像識(shí)別

    如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

    在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個(gè)簡單的機(jī)器學(xué)習(xí)模型。
    的頭像 發(fā)表于 01-08 09:25 ?895次閱讀
    如何使用<b class='flag-5'>TensorFlow</b>構(gòu)建<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>模型

    XLA和PyTorch的鏈接代碼示例

    XLA (Accelerated Linear Algebra)是一個(gè)開源機(jī)器學(xué)習(xí)編譯器,對(duì)PyTorch、Tensorflow、JAX等多個(gè)深度
    的頭像 發(fā)表于 11-17 10:54 ?655次閱讀