0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大數(shù)據(jù)與人工智能的區(qū)別以及二者之間的聯(lián)系

獨(dú)愛72H ? 來源:多智時(shí)代 ? 作者:多智時(shí)代 ? 2020-03-20 14:00 ? 次閱讀

(文章來源:多智時(shí)代)

大數(shù)據(jù)vs.人工智能是一種公平的比較嗎?在某種程度上,它是,但首先讓我們先厘清它們之間的區(qū)別。人工智能和大數(shù)據(jù)是人們耳熟能詳?shù)牧餍行g(shù)語,但也可能會(huì)有一些混淆。人工智能和大數(shù)據(jù)有什么相似之處和不同之處?它們有什么共同點(diǎn)嗎?它們是否相似?能進(jìn)行有效的比較嗎?

這兩種技術(shù)所具有的一個(gè)共同點(diǎn)是興趣。NewVantage Partners公司對(duì)企業(yè)管理人員進(jìn)行的大數(shù)據(jù)和人工智能調(diào)查發(fā)現(xiàn),97.2%的企業(yè)高管表示他們的公司正在投資、構(gòu)建或啟動(dòng)大數(shù)據(jù)和人工智能計(jì)劃。更重要的是,76.5%的企業(yè)高管認(rèn)為人工智能和大數(shù)據(jù)密切相關(guān),數(shù)據(jù)的更大可用性正在增強(qiáng)其組織內(nèi)的人工智能和認(rèn)知。

有人認(rèn)為將人工智能與大數(shù)據(jù)結(jié)合在一起是一個(gè)很自然的錯(cuò)誤,其部分原因是兩者實(shí)際上是一致的。但它們是完成相同任務(wù)的不同工具。但首先要做的事是先弄清二者的定義。很多人并不知道這些。咨詢巨頭PriceWaterhouse Coopers公司的高級(jí)研究員Alan Morrison說:“我發(fā)現(xiàn)很多人對(duì)真正的大數(shù)據(jù)或大數(shù)據(jù)分析并不太了解,或者只是以幾個(gè)突出的例子來了解人工智能。”

他說,人工智能與大數(shù)據(jù)一個(gè)主要的區(qū)別是大數(shù)據(jù)是需要在數(shù)據(jù)變得有用之前進(jìn)行清理、結(jié)構(gòu)化和集成的原始輸入,而人工智能則是輸出,即處理數(shù)據(jù)產(chǎn)生的智能。這使得兩者有著本質(zhì)上的不同。

人工智能是一種計(jì)算形式,它允許機(jī)器執(zhí)行認(rèn)知功能,例如對(duì)輸入起作用或作出反應(yīng),類似于人類的做法。傳統(tǒng)的計(jì)算應(yīng)用程序也會(huì)對(duì)數(shù)據(jù)做出反應(yīng),但反應(yīng)和響應(yīng)都必須采用人工編碼。如果出現(xiàn)任何類型的差錯(cuò),就像意外的結(jié)果一樣,應(yīng)用程序無法做出反應(yīng)。而人工智能系統(tǒng)不斷改變它們的行為,以適應(yīng)調(diào)查結(jié)果的變化并修改它們的反應(yīng)。

支持人工智能的機(jī)器旨在分析和解釋數(shù)據(jù),然后根據(jù)這些解釋解決問題。通過機(jī)器學(xué)習(xí),計(jì)算機(jī)會(huì)學(xué)習(xí)一次如何對(duì)某個(gè)結(jié)果采取行動(dòng)或做出反應(yīng),并在未來知道采取相同的行動(dòng)。大數(shù)據(jù)是一種傳統(tǒng)計(jì)算。它不會(huì)根據(jù)結(jié)果采取行動(dòng),而只是尋找結(jié)果。它定義了非常大的數(shù)據(jù)集,但也可以是極其多樣的數(shù)據(jù)。在大數(shù)據(jù)集中,可以存在結(jié)構(gòu)化數(shù)據(jù),如關(guān)系數(shù)據(jù)庫中的事務(wù)數(shù)據(jù),以及結(jié)構(gòu)化或非結(jié)構(gòu)化數(shù)據(jù)。

它們?cè)谑褂蒙弦灿胁町?。大?shù)據(jù)主要是為了獲得洞察力,例如Netflix網(wǎng)站可以根據(jù)人們觀看的內(nèi)容了解電影或電視節(jié)目,并向觀眾推薦哪些內(nèi)容。因?yàn)樗紤]了客戶的習(xí)慣以及他們喜歡的內(nèi)容,推斷出客戶可能會(huì)有同樣的感覺。人工智能是關(guān)于決策和學(xué)習(xí)做出更好的決定。無論是自我調(diào)整軟件、自動(dòng)駕駛汽車還是檢查醫(yī)學(xué)樣本,人工智能都會(huì)在人類之前完成相同的任務(wù),但速度更快,錯(cuò)誤更少。

雖然它們有很大的區(qū)別,但人工智能和大數(shù)據(jù)仍然能夠很好地協(xié)同工作。這是因?yàn)槿斯ぶ悄苄枰獢?shù)據(jù)來建立其智能,特別是機(jī)器學(xué)習(xí)。例如,機(jī)器學(xué)習(xí)圖像識(shí)別應(yīng)用程序可以查看數(shù)以萬計(jì)的飛機(jī)圖像,以了解飛機(jī)的構(gòu)成,以便將來能夠識(shí)別出它們。這是數(shù)據(jù)準(zhǔn)備的重要步驟,Morrison指出,“人們開始使用的數(shù)據(jù)是大數(shù)據(jù),但是為了訓(xùn)練模型,數(shù)據(jù)需要結(jié)構(gòu)化和集成到足夠好的程度,以便機(jī)器能夠可靠地識(shí)別數(shù)據(jù)中的有用模式?!?/p>

大數(shù)據(jù)提供了大量的數(shù)據(jù),而有用的數(shù)據(jù)必須首先從大量繁雜的數(shù)據(jù)中心分離出來,然后再做任何事情。人工智能和機(jī)器學(xué)習(xí)中使用的數(shù)據(jù)已經(jīng)被“清理”了,無關(guān)的、重復(fù)的和不必要的數(shù)據(jù)已經(jīng)被清除。所以這是第一步。

在此之后,人工智能可以蓬勃發(fā)展。大數(shù)據(jù)可以提供訓(xùn)練學(xué)習(xí)算法所需的數(shù)據(jù)。有兩種類型的數(shù)據(jù)學(xué)習(xí):初始培訓(xùn)可以定期收集數(shù)據(jù)。人工智能應(yīng)用程序一旦完成最初的培訓(xùn),并不會(huì)停止學(xué)習(xí)。隨著數(shù)據(jù)的變化,它們將繼續(xù)接收新數(shù)據(jù),并調(diào)整它們的行動(dòng)。因此,數(shù)據(jù)是最初的和持續(xù)的。

這兩種計(jì)算方式都使用模式識(shí)別,但方式有所不同。大數(shù)據(jù)分析通過順序分析來找到模式,有時(shí)候是冷數(shù)據(jù),或者是沒有收集到的數(shù)據(jù)。Hadoop是大數(shù)據(jù)分析的基本框架,它是最初設(shè)計(jì)用于在低服務(wù)器利用率的夜間運(yùn)行的批處理過程。機(jī)器學(xué)習(xí)從收集的數(shù)據(jù)中學(xué)習(xí)并不斷收集。例如,自動(dòng)駕駛汽車從未停止收集數(shù)據(jù),并且不斷學(xué)習(xí)和磨練其流程。數(shù)據(jù)總是以新鮮的方式出現(xiàn)并始終采取行動(dòng)進(jìn)行處理。

人工智能一直在被人們關(guān)注。很多人對(duì)1999年推出的一部電影“黑客帝國”的情節(jié)記憶猶新,人類與那些變得聰明的機(jī)器殊死搏斗。但在現(xiàn)實(shí)的實(shí)施過程中,人工智能直到最近一直是邊緣技術(shù)。人工智能實(shí)現(xiàn)最大的飛躍是大規(guī)模并行處理器的出現(xiàn),特別是GPU,它是具有數(shù)千個(gè)內(nèi)核的大規(guī)模并行處理單元,而不是CPU中的幾十個(gè)并行處理單元。這大大加快了現(xiàn)有的人工智能算法的速度,現(xiàn)在已經(jīng)使它們可行。

大數(shù)據(jù)可以采用這些處理器,機(jī)器學(xué)習(xí)算法可以學(xué)習(xí)如何重現(xiàn)某種行為,包括收集數(shù)據(jù)以加速機(jī)器。人工智能不會(huì)像人類那樣推斷出結(jié)論。它通過試驗(yàn)和錯(cuò)誤學(xué)習(xí),這需要大量的數(shù)據(jù)來教授和培訓(xùn)人工智能。人工智能應(yīng)用的數(shù)據(jù)越多,其獲得的結(jié)果就越準(zhǔn)確。在過去,人工智能由于處理器速度慢、數(shù)據(jù)量小而不能很好地工作。也沒有像當(dāng)今先進(jìn)的傳感器,并且當(dāng)時(shí)互聯(lián)網(wǎng)還沒有廣泛使用,所以很難提供實(shí)時(shí)數(shù)據(jù)。

如今,人們擁有所需要的一切:快速的處理器、輸入設(shè)備、網(wǎng)絡(luò)和大量的數(shù)據(jù)集。毫無疑問,沒有大數(shù)據(jù)就沒有人工智能。
(責(zé)任編輯:fqj)

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1790

    文章

    46671

    瀏覽量

    237112
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8856

    瀏覽量

    137217
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    人工智能云計(jì)算大數(shù)據(jù)關(guān)系

    人工智能、云計(jì)算與大數(shù)據(jù)之間的關(guān)系是緊密相連、相互促進(jìn)的。大數(shù)據(jù)人工智能提供了豐富的訓(xùn)練資源和驗(yàn)證環(huán)境;云計(jì)算為
    的頭像 發(fā)表于 11-06 10:03 ?104次閱讀

    I2S數(shù)據(jù)和電壓之間的對(duì)應(yīng)關(guān)系是什么?

    請(qǐng)教一個(gè)問題,就是音頻的I2S數(shù)據(jù),換算成電壓,二者之間的對(duì)應(yīng)關(guān)系或者公式是什么呢?
    發(fā)表于 11-05 08:25

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,無疑為讀者鋪設(shè)了一條探索人工智能(AI)如何深刻影響并推動(dòng)科學(xué)創(chuàng)新的道路。在閱讀這一章后,我深刻感受到了人工智能技術(shù)在科學(xué)領(lǐng)域的廣泛應(yīng)用潛力以及其帶來的革命性變化,以下是我個(gè)人的學(xué)習(xí)心得: 1.
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    定制性。這些特點(diǎn)使得RISC-V在多個(gè)領(lǐng)域,包括人工智能圖像處理領(lǐng)域,具有顯著的優(yōu)勢(shì)。 、RISC-V在人工智能圖像處理中的優(yōu)勢(shì) 開源性和靈活性 : RISC-V的開源性意味著任何人都可以自由研究
    發(fā)表于 09-28 11:00

    智能制造與人工智能區(qū)別

    智能制造與人工智能在定義、技術(shù)組成、應(yīng)用領(lǐng)域以及發(fā)展重點(diǎn)等方面存在明顯的區(qū)別。
    的頭像 發(fā)表于 09-15 14:27 ?561次閱讀

    名單公布!【書籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學(xué)研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對(duì)AI for Science的技術(shù)支撐進(jìn)行解讀。 第3章介紹了在
    發(fā)表于 09-09 13:54

    串口屏與人工智能的結(jié)合

    著重要作用。而人工智能技術(shù)的融入,則為串口屏賦予了“智慧”的大腦,使其不僅能夠高效展示信息,還能進(jìn)行數(shù)據(jù)分析、智能決策,乃至實(shí)現(xiàn)更加人性化的人機(jī)交互。本文將深入探討串口屏如何與人工智能
    的頭像 發(fā)表于 08-16 12:29 ?1248次閱讀

    計(jì)算機(jī)視覺與人工智能的關(guān)系是什么

    、交流等方面。計(jì)算機(jī)視覺與人工智能之間存在著密切的聯(lián)系,計(jì)算機(jī)視覺是人工智能的一個(gè)重要分支,也是實(shí)現(xiàn)人工智能的關(guān)鍵技術(shù)之一。 計(jì)算機(jī)視覺的定
    的頭像 發(fā)表于 07-09 09:25 ?484次閱讀

    神經(jīng)元與神經(jīng)網(wǎng)絡(luò)的區(qū)別聯(lián)系

    人工智能和機(jī)器學(xué)習(xí)的領(lǐng)域中,神經(jīng)元和神經(jīng)網(wǎng)絡(luò)是兩個(gè)至關(guān)重要的概念。雖然它們都與人腦中的神經(jīng)系統(tǒng)有著密切的聯(lián)系,但在實(shí)際應(yīng)用和理論研究中,它們各自扮演著不同的角色。本文旨在深入探討神經(jīng)元與神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-01 11:50 ?761次閱讀

    電路原理圖和電路仿真圖的區(qū)別聯(lián)系

    電路原理圖和電路仿真圖是電子工程領(lǐng)域中兩種常見的圖形表示方法,用于描述電子電路的結(jié)構(gòu)和工作原理。雖然二者在某些方面有所不同,但它們也有密切的聯(lián)系。以下將從不同角度逐一介紹二者區(qū)別
    的頭像 發(fā)表于 04-21 10:17 ?5281次閱讀

    在STM32中,通信串口USART與I2C之間有啥原理上的區(qū)別二者之間又有什么聯(lián)系?

    請(qǐng)問一下,在STM32中,通信串口USART與I2C之間有啥原理上的區(qū)別二者之間又有什么聯(lián)系?對(duì)于所有的通信之間,又存在什么樣的關(guān)聯(lián)?
    發(fā)表于 03-25 07:27

    科達(dá)嘉電感器在大數(shù)據(jù)與人工智能領(lǐng)域被廣泛應(yīng)用

    近年來,大數(shù)據(jù)與人工智能成為科技領(lǐng)域的熱門話題。大數(shù)據(jù)人工智能提供了大量的數(shù)據(jù)作為輸入,使得人工智能
    的頭像 發(fā)表于 02-29 13:56 ?444次閱讀

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時(shí)代背景下,嵌入式人工智能成為國家新型基礎(chǔ)建設(shè)與傳統(tǒng)產(chǎn)業(yè)升級(jí)的核心驅(qū)動(dòng)力。同時(shí)在此背景驅(qū)動(dòng)下,眾多名企也紛紛在嵌入式人工智能領(lǐng)域布局
    發(fā)表于 02-26 10:17

    科達(dá)嘉電感器廣泛應(yīng)用于大數(shù)據(jù)人工智能領(lǐng)域?yàn)锳I賦能

    近年來,大數(shù)據(jù)與人工智能成為科技領(lǐng)域的熱門話題。大數(shù)據(jù)人工智能提供了大量的數(shù)據(jù)作為輸入,使得人工智能
    的頭像 發(fā)表于 02-23 17:29 ?792次閱讀

    什么是光學(xué)中的近場(chǎng)和遠(yuǎn)場(chǎng)?二者區(qū)別是什么?

    近場(chǎng)和遠(yuǎn)場(chǎng)在不同的光學(xué)范疇有不同的定義,需要加以區(qū)分。下面從菲涅爾數(shù)入手,通過菲涅爾數(shù)介紹二者區(qū)別
    的頭像 發(fā)表于 12-11 09:44 ?5397次閱讀
    什么是光學(xué)中的近場(chǎng)和遠(yuǎn)場(chǎng)?<b class='flag-5'>二者</b>的<b class='flag-5'>區(qū)別</b>是什么?