0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Explainable AI旨在提高機器學習模型的可解釋性

倩倩 ? 來源:互聯(lián)網(wǎng)分析沙龍 ? 2020-03-24 15:14 ? 次閱讀

Google LLC 在其云平臺上推出了一項新的“ 可解釋AI ”服務(wù),旨在使機器學習模型做出決策的過程更加透明。

谷歌表示,這樣做的想法是,這將有助于建立對這些模型的更大信任。這很重要,因為大多數(shù)現(xiàn)有模型往往相當不透明。只是不清楚他們?nèi)绾巫龀鰶Q定。

Google Cloud AI戰(zhàn)略總監(jiān)Tracy Frey在 今天的博客中解釋說,Explainable AI旨在提高機器學習模型的可解釋性。她說,這項新服務(wù)的工作原理是量化每個數(shù)據(jù)因素對模型產(chǎn)生的結(jié)果的貢獻,幫助用戶了解其做出決定的原因。

換句話說,它不會以通俗易懂的方式來解釋事物,但是該分析對于首先構(gòu)建機器學習模型的數(shù)據(jù)科學家和開發(fā)人員仍然有用。

可解釋的AI有進一步的局限性,因為它提出的任何解釋都將取決于機器學習模型的性質(zhì)以及用于訓(xùn)練它的數(shù)據(jù)。

她寫道:“任何解釋方法都有局限性?!?“一方面,AI解釋反映了數(shù)據(jù)中發(fā)現(xiàn)的模型的模式,但它們并未揭示數(shù)據(jù)樣本,總體或應(yīng)用程序中的任何基本關(guān)系。我們正在努力為客戶提供最直接,最有用的解釋方法,同時保持其局限性透明。”

但是,可解釋的AI可能很重要,因為準確解釋特定機器學習模型為何得出結(jié)論的原因?qū)τ诮M織內(nèi)的高級管理人員很有用,他們最終負責這些決策。對于高度嚴格的行業(yè)來說,這尤其重要,而信心絕對至關(guān)重要。谷歌表示,對于處于這一位置的許多組織而言,目前沒有任何可解釋性的人工智能已經(jīng)超出范圍。

在相關(guān)新聞中,Google還發(fā)布了所謂的“模型卡”,作為其Cloud Vision應(yīng)用程序編程界面的面部檢測和對象檢測功能的文檔。

這些模型卡詳細說明了這些預(yù)先訓(xùn)練的機器學習模型的性能特征,并提供了有關(guān)其性能和限制的實用信息。谷歌表示,其目的是幫助開發(fā)人員就使用哪種模型以及如何負責任地部署它們做出更明智的決定。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6128

    瀏覽量

    104948
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8349

    瀏覽量

    132315
收藏 人收藏

    評論

    相關(guān)推薦

    常見AI模型的比較與選擇指南

    在選擇AI模型時,明確具體需求、了解模型的訓(xùn)練數(shù)據(jù)、計算資源要求和成本,并考慮模型可解釋性和社區(qū)支持情況等因素至關(guān)重要。以下是對常見
    的頭像 發(fā)表于 10-23 15:36 ?340次閱讀

    AI模型與深度學習的關(guān)系

    人類的學習過程,實現(xiàn)對復(fù)雜數(shù)據(jù)的學習和識別。AI模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進行訓(xùn)練和推理。深度
    的頭像 發(fā)表于 10-23 15:25 ?306次閱讀

    AI模型與傳統(tǒng)機器學習的區(qū)別

    AI模型與傳統(tǒng)機器學習在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI
    的頭像 發(fā)表于 10-23 15:01 ?292次閱讀

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第二章AI for Science的技術(shù)支撐學習心得

    。 4. 物理與AI的融合 在閱讀過程中,我對于物理與AI的融合有了更加深入的認識。AI for Science不僅依賴于數(shù)據(jù),還需要結(jié)合物理定律和原理來確保模型的準確
    發(fā)表于 10-14 09:16

    RISC-V如何支持不同的AI機器學習框架和庫?

    RISC-V如何支持不同的AI機器學習框架和庫?還請壇友們多多指教一下。
    發(fā)表于 10-10 22:24

    AI引擎機器學習陣列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在憑借 AI 引擎機器
    的頭像 發(fā)表于 09-18 09:16 ?285次閱讀
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>機器</b><b class='flag-5'>學習</b>陣列指南

    Al大模型機器

    和迭代來不斷改進自身性能。它們可以從用戶交互中學習并根據(jù)反饋進行調(diào)整,以提高對話質(zhì)量和準確??啥ㄖ?b class='flag-5'>性與整合:
    發(fā)表于 07-05 08:52

    【大規(guī)模語言模型:從理論到實踐】- 閱讀體驗

    直觀地解釋和理解。這可能會影響模型可解釋性和可信賴,特別是在需要高度可靠的場景中。 通過修改注意力機制的計算方式或引入新的架構(gòu)來降低
    發(fā)表于 06-07 14:44

    【大語言模型:原理與工程實踐】核心技術(shù)綜述

    中應(yīng)用,需要考慮到性能、可擴展性和安全等因素。 大語言模型正在快速發(fā)展,新技術(shù)不斷涌現(xiàn)。未來的研究可能集中在提高模型效率、理解和可解釋性
    發(fā)表于 05-05 10:56

    Meta發(fā)布SceneScript視覺模型,高效構(gòu)建室內(nèi)3D模型

    Meta 表示,此模型具備創(chuàng)建室內(nèi) 3D 模型的高效與輕便,僅需幾KB內(nèi)存便能生成完整清晰的幾何圖形,同時,這些形狀數(shù)據(jù)具備可解釋性,便于用戶理解和編輯。
    的頭像 發(fā)表于 03-26 11:16 ?529次閱讀

    AI算法在礦山智能化中的應(yīng)用全解析

    調(diào)度、強化學習、異常檢測和診斷以及數(shù)據(jù)融合和信息集成等方面。此外,還需關(guān)注數(shù)據(jù)基礎(chǔ)設(shè)施、系統(tǒng)集成、網(wǎng)絡(luò)安全、人工智能倫理和可解釋性等問題。通過整合這些技術(shù)和方法,礦山企業(yè)可以提高生產(chǎn)效率、降低風險、減少成本,實現(xiàn)可持續(xù)發(fā)展。
    的頭像 發(fā)表于 03-20 10:59 ?566次閱讀
    <b class='flag-5'>AI</b>算法在礦山智能化中的應(yīng)用全解析

    愛立信推出認知軟件新功能

    日前,愛立信宣布在其專為運營商設(shè)計的認知軟件組合中,新增采用“可解釋性人工智能(Explainable AI,XAI)”的新功能,進一步加速在網(wǎng)絡(luò)設(shè)計和優(yōu)化中采用人工智能后的價值轉(zhuǎn)化。
    的頭像 發(fā)表于 02-22 09:22 ?5186次閱讀

    什么是機器學習?它的重要體現(xiàn)在哪

    機器學習是一種人工智能(AI)的子領(lǐng)域,旨在使計算機系統(tǒng)通過經(jīng)驗自動學習和改進,而無需明確地進行編程。它側(cè)重于開發(fā)算法和
    的頭像 發(fā)表于 01-05 08:27 ?1339次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?它的重要<b class='flag-5'>性</b>體現(xiàn)在哪

    華為云AI峰會揭示大模型實踐難題

    除此之外,還存在行業(yè)訓(xùn)練數(shù)據(jù)安全控制、大模型幻覺緩解消除及可解釋性、構(gòu)建具有強大邏輯推理規(guī)劃能力的大模型、基于圖數(shù)據(jù)的知識增強技術(shù)、通用結(jié)構(gòu)化數(shù)據(jù)特性對齊和預(yù)訓(xùn)練,以及視覺領(lǐng)域下一個token預(yù)測任務(wù)建模等挑戰(zhàn)。
    的頭像 發(fā)表于 12-25 10:33 ?750次閱讀

    新火種AI|比爾蓋茨表態(tài):生成式AI已成過去接下來是可解釋AI的天下

    可解釋AI。比爾.蓋茨預(yù)測,未來10年(2030年-2039年),AI領(lǐng)域的主角將成為可解釋AI。 ? 大部分人預(yù)判:GPT-5將明顯優(yōu)于
    的頭像 發(fā)表于 12-06 10:36 ?720次閱讀
    新火種<b class='flag-5'>AI</b>|比爾蓋茨表態(tài):生成式<b class='flag-5'>AI</b>已成過去接下來是<b class='flag-5'>可解釋</b><b class='flag-5'>AI</b>的天下