0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

高穩(wěn)定的硅碳技術(shù)助力高比能鋰離子電池的研發(fā)

獨(dú)愛72H ? 來源:新能源Leader ? 作者:新能源Leader ? 2020-03-26 14:39 ? 次閱讀

(文章來源:新能源Leader)

石墨負(fù)極的理論比容量為372mAh/g,已經(jīng)無法滿足新一代高比能鋰離子電池的設(shè)計需求,Si基負(fù)極材料理論容量可達(dá)4200mAh/g以上,嵌鋰電位與石墨材料接近,是一種理想的負(fù)極材料。但是硅負(fù)極材料在嵌鋰的過程中體積膨脹可達(dá)300%以上,這不僅會造成顆粒自身的粉化和破碎,還會造成電極結(jié)構(gòu)的破壞,嚴(yán)重影響鋰離子電池的循環(huán)壽命。

近日,韓國漢陽大學(xué)的Dongsoo Lee(第一作者)和Makio Naito(通訊作者),Ungyu Paik(通訊作者)等人通過在納米Si顆粒與石墨片噴霧造粒的方式,制備了納米Si/石墨片復(fù)合材料,有效地抑制了Si材料的體積膨脹,同時通過在其表面包覆一層無定形碳的方式,有效降低了材料的比表面積,使得該材料的首次效率達(dá)到85%,該材料表現(xiàn)出了優(yōu)異的循環(huán)穩(wěn)定性,在1C倍率下循環(huán)500次后容量保持率仍然可達(dá)71%。

高穩(wěn)定的硅碳技術(shù)助力高比能鋰離子電池的研發(fā)

下圖展示了該復(fù)合Si基材料的制備過程,首先將納米Si顆粒與石墨片均勻的混合,然后采用噴霧干燥的方法形成均勻的Si/石墨片顆粒(SGG),這種SGG顆粒比表面積過大,同時機(jī)械強(qiáng)度也較差,因此庫倫效率和循環(huán)性能都比較差。為了解決這一問題,作者通過機(jī)械混合的方式將瀝青均勻地涂布在SGG顆粒的表面,并在800℃的溫度下對其進(jìn)行了處理,從而在SGG顆粒的表面均勻的形成了一層無定形石墨材料,降低了Si材料與電解液的接觸面積,并提高了SGG材料的機(jī)械強(qiáng)度,從而顯著改善了SGG材料的電化學(xué)性能。

SGG顆粒的首次脫鋰容量為1650mAh/g,首次庫倫效率為79%,而無定形碳包覆的C@SGG顆粒的首次脫鋰容量為1150mAh/g,但是首次效率提升到了85%,這主要是因?yàn)闊o定形碳的包覆顯著降低了材料的比表面積,從而減少了SEI膜生成的數(shù)量,進(jìn)而提升了首次充放電庫倫效率。在循環(huán)測試中C@SGG顆粒表現(xiàn)出了顯著的優(yōu)勢,在前20次循環(huán)中SGG顆粒容量就出現(xiàn)了嚴(yán)重的衰降,但是C@SGG顆粒在前50次循環(huán)中容量只出現(xiàn)了輕微的衰降。

為了驗(yàn)證該材料在實(shí)際應(yīng)用中的效果,作者分別采用10%的SGG或C@SGG與90%石墨進(jìn)行混合作為負(fù)極,LCO為正極,制作了軟包電池,從下圖3c可以看到C@SGG與石墨混合的電極首次效率達(dá)到了90%,與石墨負(fù)極的電池基本相當(dāng)。從下圖d的循環(huán)性能可以看到,C@SGG與石墨混合的電極表現(xiàn)出了優(yōu)異的循環(huán)穩(wěn)定性,在1C倍率下循環(huán)100次容量保持率為83%,循環(huán)500次后容量保持率達(dá)到了71%。而石墨負(fù)極在循環(huán)100次后容量保持率為93%,略高于C@SGG材料,但是在500次循環(huán)后石墨材料的容量保持率僅為66%,這要明顯低于C@SGG材料。

高穩(wěn)定的硅碳技術(shù)助力高比能鋰離子電池的研發(fā)

添加10%的C@SGG材料的電池具有更小的SEI膜阻抗和電荷交換阻抗,根據(jù)交流阻抗數(shù)據(jù)計算的Li+擴(kuò)散系數(shù)也顯示添加10%的C@SGG材料的電極擴(kuò)散系數(shù)為7.803×10-14,要明顯高于石墨電極的1.115×10-14,C@SGG材料的這些特性使得其倍率性能要好于石墨材料。

體積膨脹是硅碳材料在應(yīng)用中面臨的最大障礙,而在C@SGG材料中,顆粒內(nèi)部存在著較多的自由空間,因此能夠有效的吸收納米Si顆粒在充電過程中產(chǎn)生的體積膨脹,有效的減少了硅材料體積膨脹對于電極結(jié)構(gòu)的破壞。

在首次0.1C充電的過程中電池體積膨脹為12.7%,在第三次1C充電后電池體積膨脹為14.5%,在整個循環(huán)過程中石墨負(fù)極的電池體積膨脹比較穩(wěn)定,在50次循環(huán)后,放電狀態(tài)體積膨脹5.6%。添加10%的C@SGG材料的電池首次0.1C充電后體積膨脹為13.9%,在第三次1C充電后電池體積膨脹16%,在經(jīng)過50次循環(huán)后電池體積膨脹為6.7%,與采用純石墨負(fù)極的電池比較接近。但是當(dāng)C@SGG材料添加量達(dá)到20%后,電池的體積膨脹顯著增加,在首次0.1C充電后體積膨脹達(dá)到了23%,并且在后續(xù)的循環(huán)過程中電池的體積膨脹快速增加。

Dongsoo Lee開的C@SGG材料巧妙的利用了納米硅/石墨片顆粒中間的孔隙,吸收了納米Si材料在充放電過程中的體積膨脹,減少了Si材料體積膨脹對于電極結(jié)構(gòu)的破壞,提升了C@SGG材料的循環(huán)性能。同時通過無定形碳表面包覆技術(shù),有效地降低了該材料的比表面積,減少了副反應(yīng),有效地提升了材料的首次效率。
(責(zé)任編輯:fqj)

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰電池
    +關(guān)注

    關(guān)注

    259

    文章

    7998

    瀏覽量

    169156
  • 電池技術(shù)
    +關(guān)注

    關(guān)注

    11

    文章

    900

    瀏覽量

    49173
收藏 人收藏

    評論

    相關(guān)推薦

    新能源行業(yè)鋰離子電池測試

    01背景新能源行業(yè)是近年來快速發(fā)展的一個新興產(chǎn)業(yè),其主要特點(diǎn)是利用可再生能源和清潔能源來替代傳統(tǒng)化石能源,從而實(shí)現(xiàn)能源的可持續(xù)發(fā)展。鋰離子電池作為新能源行業(yè)的核心部件之一,其性能和穩(wěn)定性對整個系統(tǒng)
    的頭像 發(fā)表于 07-21 08:33 ?550次閱讀
    新能源行業(yè)<b class='flag-5'>鋰離子電池</b>測試

    通信電源系統(tǒng)的守護(hù)者:鋰離子電池

    在通信電源系統(tǒng)中,為保障通信電源系統(tǒng)不間斷工作,鋰離子電池作為備用電源,成為其重要的守護(hù)者。一套配置了鋰離子電池的通信電源系統(tǒng),當(dāng)市電停電時,鋰離子電池立即取代市電為負(fù)載設(shè)備供電,以確保負(fù)載能不
    的頭像 發(fā)表于 06-15 08:05 ?164次閱讀
    通信電源系統(tǒng)的守護(hù)者:<b class='flag-5'>鋰離子電池</b>

    鋰離子電池化成及分容工藝概述

    01鋰離子電池 根據(jù)《中國鋰離子電池產(chǎn)業(yè)發(fā)展白皮書(2023年)》,全球整體鋰離子電池出貨量在2022年達(dá)到957.7GWh,同比增長70.3%。其廣泛應(yīng)用于新能源汽車、電站儲電源系
    的頭像 發(fā)表于 05-21 17:44 ?4187次閱讀
    <b class='flag-5'>鋰離子電池</b>化成及分容工藝概述

    鋰離子電池生產(chǎn)過程中濕度控制的重要性

    鋰離子電池在生產(chǎn)過程中對濕度要求非常,主要是因?yàn)樗质Э鼗虼只刂?,會對電解液產(chǎn)生不良影響。電解液是電池離子傳輸?shù)妮d體,由鋰鹽和有機(jī)溶劑組成,是
    的頭像 發(fā)表于 01-25 17:10 ?1147次閱讀
    <b class='flag-5'>鋰離子電池</b>生產(chǎn)過程中濕度控制的重要性

    什么是鋰離子電池鋰離子電池有記憶效應(yīng)嗎?

    什么是鋰離子電池?鋰離子電池有記憶效應(yīng)嗎? 鋰離子電池是一種通過鋰離子在正負(fù)極之間的反復(fù)遷移實(shí)現(xiàn)電荷儲存和釋放的電池。它是一種高能量密度、容
    的頭像 發(fā)表于 01-10 16:31 ?1559次閱讀

    鋰離子電池的充放電原理  鋰離子電池和三元鋰電池哪個好

     鋰離子電池的工作原理是基于鋰離子在正極和負(fù)極之間的遷移,利用化學(xué)反應(yīng)將化學(xué)轉(zhuǎn)化為電能的物理過程。
    發(fā)表于 01-10 15:23 ?1567次閱讀

    什么是鋰離子電池失效?鋰離子電池失效如何有效分析檢測?

    什么是鋰離子電池失效?鋰離子電池失效如何有效分析檢測? 鋰離子電池失效是指電池容量的顯著下降或功能完全喪失,導(dǎo)致電池無法提供持久且
    的頭像 發(fā)表于 01-10 14:32 ?835次閱讀

    離子電池未來會取代鋰離子電池嗎?兩者之間有何異同?

    探討鈉離子電池鋰離子電池之間的異同點(diǎn),并展望鈉離子電池在未來對鋰離子電池的潛在替代。 一、介紹
    的頭像 發(fā)表于 01-10 13:45 ?738次閱讀

    鋰離子電池的缺點(diǎn)和解決方案

    鋰離子電池是目前廣泛應(yīng)用于電子產(chǎn)品、電動工具、電動車輛等領(lǐng)域的重要能量儲存技術(shù),但它也存在一些缺點(diǎn)。本文將詳細(xì)介紹鋰離子電池的缺點(diǎn),并提出相應(yīng)的解決方案。 首先,鋰離子電池存在容量衰減
    的頭像 發(fā)表于 12-20 17:01 ?1970次閱讀

    短路對鋰離子電池的影響

    主要原因。以下將詳細(xì)介紹短路對鋰離子電池的影響。 首先,一個短路往往會導(dǎo)致電流瞬間增加到非常的水平。鋰離子電池中的電流一般都是經(jīng)過控制的,如果電流超過了電池設(shè)計允許的范圍,就會造成
    的頭像 發(fā)表于 12-08 15:55 ?1993次閱讀

    內(nèi)部應(yīng)力緩解促成的用于鋰離子電池的高性能富微粒負(fù)極

    對于微米級顆粒負(fù)極來說,循環(huán)過程中嚴(yán)重的顆粒粉碎阻礙了其在鋰離子電池中的實(shí)際應(yīng)用。
    的頭像 發(fā)表于 12-08 09:32 ?808次閱讀
    內(nèi)部應(yīng)力緩解促成的用于<b class='flag-5'>鋰離子電池</b>的高性能富<b class='flag-5'>硅</b>微粒負(fù)極

    改變我們生活的鋰離子電池 | 第一講:什么是鋰離子電池?專家談鋰離子電池的工作原理和特點(diǎn)

    改變我們生活的鋰離子電池 | 第一講:什么是鋰離子電池?專家談鋰離子電池的工作原理和特點(diǎn)
    的頭像 發(fā)表于 12-06 15:12 ?742次閱讀
    改變我們生活的<b class='flag-5'>鋰離子電池</b> | 第一講:什么是<b class='flag-5'>鋰離子電池</b>?專家談<b class='flag-5'>鋰離子電池</b>的工作原理和特點(diǎn)

    無分散劑膠體與-納米界面工程制備高性能鋰離子電池負(fù)極材料

    導(dǎo)電性納米材料因其在鋰離子電池中作為穩(wěn)定電極的潛在應(yīng)用而備受關(guān)注。然而,對它們的分散和與活性物質(zhì)的有效雜交的關(guān)注仍然存在。
    的頭像 發(fā)表于 12-06 09:23 ?650次閱讀
    無分散劑膠體與<b class='flag-5'>硅</b>-納米<b class='flag-5'>碳</b>界面工程制備高性能<b class='flag-5'>鋰離子電池</b>負(fù)極材料

    改變我們生活的鋰離子電池 | 第二講:鋰離子電池的優(yōu)點(diǎn)和充電時的注意事項(xiàng)

    改變我們生活的鋰離子電池 | 第二講:鋰離子電池的優(yōu)點(diǎn)和充電時的注意事項(xiàng)
    的頭像 發(fā)表于 12-05 18:10 ?467次閱讀
    改變我們生活的<b class='flag-5'>鋰離子電池</b> | 第二講:<b class='flag-5'>鋰離子電池</b>的優(yōu)點(diǎn)和充電時的注意事項(xiàng)

    鋰離子電池的優(yōu)缺點(diǎn)

    鋰離子電池的優(yōu)缺點(diǎn) 鋰離子電池是一種常見的充電式電池,被廣泛應(yīng)用于移動設(shè)備、電動車輛以及儲系統(tǒng)等領(lǐng)域。它的優(yōu)點(diǎn)包括高能量密度、長壽命、輕量化等,但同時也存在著安全性、成本以及環(huán)境污染
    的頭像 發(fā)表于 11-22 17:15 ?3753次閱讀