0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NASA呼吁幫助識別和分類珊瑚

汽車玩家 ? 來源:cnBeta ? 作者:cnBeta ? 2020-04-11 10:38 ? 次閱讀

美國NASA呼吁公民科學(xué)家通過玩一個虛擬潛水游戲來幫助識別和分類世界上的珊瑚,讓專家們能夠更好地了解它們的進(jìn)化,以及如何在未來保護(hù)它們。用戶需要的是下載NASA NeMO-Net游戲,它目前有iOS和iPadOS 版本(macOS和Android版本即將推出)。

這款游戲?qū)阍诤Q笾羞M(jìn)行一系列的虛擬潛水,你的任務(wù)是識別你所遇到的珊瑚。計算機(jī)生成的水下環(huán)境是基于美國宇航局位于加州的艾姆斯研究中心在過去幾年中收集到的數(shù)據(jù)。那里的團(tuán)隊(duì)一直在使用流體透鏡相機(jī)繪制出比以往更詳細(xì)的海洋地圖。

這些相機(jī)最初是為了讓地面上的天文學(xué)家能看到不受大氣層扭曲的恒星而開發(fā)的,但也可以避免水的扭曲來繪制海底地圖。然而,盡管這些相機(jī)再先進(jìn),但它們并不能揭示出坐在海浪下的珊瑚的全部圖片,通過巡視和識別你在游戲中看到的珊瑚類型,以及它們的確切位置,你可以幫助NASA收集相關(guān)數(shù)據(jù)。

NASA表示任何人,甚至是一年級的小學(xué)生,都可以通過玩這個游戲,對這些數(shù)據(jù)進(jìn)行分類,幫助我們繪制出全球珊瑚地圖。這個游戲也很有教育意義,教用戶識別世界海洋中珊瑚的種類。用戶提交的所有資料都會被艾姆斯研究中心的Pleiades超級計算機(jī)處理,訓(xùn)練它如何根據(jù)原始數(shù)據(jù)識別不同類型的珊瑚。與其他神經(jīng)網(wǎng)絡(luò)一樣,隨著訓(xùn)練的深入,它的識別效率應(yīng)該會隨著時間的推移而不斷提高,因此,即使是質(zhì)量較低的數(shù)據(jù),它最終也能獨(dú)立識別出珊瑚類型。注冊使用NeMO-Net的人越多,系統(tǒng)就會變得越聰明。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • NASA
    +關(guān)注

    關(guān)注

    0

    文章

    427

    瀏覽量

    30876
收藏 人收藏

    評論

    相關(guān)推薦

    華為以AI技術(shù)助力東山珊瑚保護(hù)

    最新的實(shí)踐成果——東山珊瑚智慧監(jiān)測項(xiàng)目。研討會由自然資源部第一海洋研究所、中國-PEMSEA海岸帶可持續(xù)管理合作中心以及PEMSEA秘書處共同主辦,眾多國內(nèi)外NGOs、海洋保護(hù)領(lǐng)域?qū)<覅⑴c。
    的頭像 發(fā)表于 11-11 10:29 ?45次閱讀

    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)Yolov5分類檢測

    NPU。 應(yīng)用領(lǐng)域 圖像識別: NPU能夠迅速對圖像進(jìn)行分類、檢測和分割等操作,大大提升了處理效率。 語音識別: NPU實(shí)現(xiàn)了實(shí)時語音轉(zhuǎn)換和語音合成功能,為語音交互提供了更自然的體驗(yàn)。 自然語言處理
    發(fā)表于 10-24 10:13

    基于高光譜數(shù)據(jù)的典型地物分類識別方法研究

    隨著成像光譜儀器的廣泛應(yīng)用,利用光譜數(shù)據(jù)進(jìn)行物質(zhì)分類識別已經(jīng)成為一項(xiàng)重要的研究內(nèi)容,研究不同分類算法對最終的目標(biāo)識別準(zhǔn)確度具有重要意義。
    的頭像 發(fā)表于 07-18 14:43 ?240次閱讀
    基于高光譜數(shù)據(jù)的典型地物<b class='flag-5'>分類</b><b class='flag-5'>識別</b>方法研究

    圖像識別技術(shù)的原理是什么

    圖像識別技術(shù)是一種利用計算機(jī)視覺和機(jī)器學(xué)習(xí)技術(shù)對圖像進(jìn)行分析和理解的技術(shù)。它可以幫助計算機(jī)識別和理解圖像中的對象、場景和活動。 圖像預(yù)處理 圖像預(yù)處理是圖像識別的第一步,它包括圖像的去
    的頭像 發(fā)表于 07-16 10:46 ?792次閱讀

    基于PYNQ的智能垃圾分類系統(tǒng)

    的問題,減輕社會和居民的壓力,如果可以實(shí)現(xiàn)可回收垃圾二次分類,對生活垃圾自主分類就顯得尤為重要。于此,我們決定設(shè)計這樣一個作品—智能識別自動投遞分類垃圾箱,方便垃圾回收和利用。本作品是
    發(fā)表于 07-09 18:44

    深度學(xué)習(xí)中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域的重要任務(wù)之一,廣泛應(yīng)用于人體活動識別、系統(tǒng)監(jiān)測、金融預(yù)測、醫(yī)療診斷等多個領(lǐng)域。隨著深度學(xué)習(xí)技術(shù)
    的頭像 發(fā)表于 07-09 15:54 ?653次閱讀

    人臉識別模型訓(xùn)練是什么意思

    人臉識別模型訓(xùn)練是指通過大量的人臉數(shù)據(jù),使用機(jī)器學(xué)習(xí)或深度學(xué)習(xí)算法,訓(xùn)練出一個能夠識別分類人臉的模型。這個模型可以應(yīng)用于各種場景,如安防監(jiān)控、身份認(rèn)證、社交媒體等。下面將介紹人臉識別
    的頭像 發(fā)表于 07-04 09:16 ?435次閱讀

    NASA已經(jīng)啟動Psyche的電動霍爾推進(jìn)器

    NASA(美國國家航空航天局)已經(jīng)啟動了Psyche的電動霍爾推進(jìn)器,這是一艘正在緩慢駛向嵌入火星外主小行星帶的富含金屬的小行星的航天器。該機(jī)構(gòu)表示,Psyche在2023年10月13日用
    的頭像 發(fā)表于 06-05 16:55 ?713次閱讀

    NASA出品!36像素的傳感器

    來源:半導(dǎo)體行業(yè)觀察,謝謝 編輯:感知芯視界 Link 雖然 NASA 的詹姆斯·韋伯太空望遠(yuǎn)鏡正在幫助天文學(xué)家在距地球 150 萬公里處拍攝122 兆像素的照片,但該機(jī)構(gòu)的最新相機(jī)僅用 36 像素
    的頭像 發(fā)表于 05-27 11:07 ?359次閱讀

    基于毫米波的人體跟蹤和識別算法

    。雷達(dá)已被提議作為粗粒度活動識別的替代模式,使用微多普勒頻譜圖捕捉環(huán)境信息的最小子集。然而,由于低成本毫米波雷達(dá)系統(tǒng)產(chǎn)生稀疏和不均勻的點(diǎn)云,訓(xùn)練細(xì)粒度、準(zhǔn)確的活動分類器是一個挑戰(zhàn)。在本文中,我們提出
    發(fā)表于 05-14 18:40

    NASA尋求更快廉價火星樣本收集方法

    納爾遜強(qiáng)調(diào),“等待如此之久無法接受”,他表示NASA計劃在2040年代將人類送上火星。為了實(shí)現(xiàn)這個目標(biāo),NASA計劃向各中心及噴氣推進(jìn)實(shí)驗(yàn)室征集更高效、低成本的樣本返回方案。
    的頭像 發(fā)表于 04-16 10:36 ?393次閱讀

    語音識別的技術(shù)歷程及工作原理

    語音識別的本質(zhì)是一種基于語音特征參數(shù)的模式識別,即通過學(xué)習(xí),系統(tǒng)能夠把輸入的語音按一定模式進(jìn)行分類,進(jìn)而依據(jù)判定準(zhǔn)則找出最佳匹配結(jié)果。
    的頭像 發(fā)表于 03-22 16:58 ?2685次閱讀
    語音<b class='flag-5'>識別</b>的技術(shù)歷程及工作原理

    NASA將阿耳忒彌斯推遲至2026年實(shí)施

    NASA解釋,獲延的項(xiàng)目任務(wù)旨在保障宇航員安全,原因是需處理電池問題及研究環(huán)境設(shè)備電路,包括優(yōu)化空氣流通等因素。同時,NASA將以此為契機(jī),打造月球科學(xué)勘測的基石,期盼女性及少數(shù)族裔登月,以及助力人類火星探索。
    的頭像 發(fā)表于 01-10 10:51 ?625次閱讀

    CNN圖像分類策略

    在深度學(xué)習(xí)出現(xiàn)之前,自然圖像中的對象識別過程相當(dāng)粗暴簡單:定義一組關(guān)鍵視覺特征(“單詞”),識別每個視覺特征在圖像中的存在頻率(“包”),然后根據(jù)這些數(shù)字對圖像進(jìn)行分類。這些模型被稱為“特征包”模型(BoF模型)。
    發(fā)表于 12-25 11:36 ?267次閱讀
    CNN圖像<b class='flag-5'>分類</b>策略

    保險電阻的識別方法

    保險電阻識別方法? 保險電阻的正確識別對于電子設(shè)備的正常運(yùn)行和使用安全至關(guān)重要。本文旨在詳盡、詳實(shí)、細(xì)致地探討保險電阻的識別方法,幫助讀者更好地理解和應(yīng)用該技術(shù)。 一、保險電阻的基本概
    的頭像 發(fā)表于 12-15 10:55 ?1443次閱讀