0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

從麥克斯韋談寄生電感由來和定義

硬件工程師煉成之路 ? 來源:csdn ? 作者:硬件工程師煉成之 ? 2020-08-26 15:42 ? 次閱讀

最近在整理電感的內(nèi)容,忽然就有個(gè)問題不明白了:寄生電感怎么來的呢?一段直直的導(dǎo)線怎么也會(huì)存在電感,不是只有線圈才能成為電感嗎?

想到以前看的書,這個(gè)寄生電感的存在大家都默認(rèn)是有的,貌似也沒有人懷疑這個(gè)東西是真的存在嗎(還是只有我沒懷疑)?說到芯片,就是引腳寄生電感,走線長(zhǎng)點(diǎn),就是引線電感這些東西,說到傳輸線,也說有寄生電感。那么它們到底是怎么來的呢?

為了搞清這個(gè)問題,我查了一些資料,結(jié)合自己的思考,把我的想法分享給大家。

電感的定義

首先,要解決上面的問題,咱們必須得認(rèn)真對(duì)待下電感的定義是什么這個(gè)問題了,這里要區(qū)別下我們用的電感這一元器件,我們想說的是電感的廣義定義,不僅僅是刻意做出的器件,還包括無意中形成的電感。

上網(wǎng)查了一下,很多地方定義都不盡相同,先來看看百科的定義。

百度百科定義:電感是閉合回路的一種屬性,是一個(gè)物理量。當(dāng)電流通過線圈后,在線圈中形成磁場(chǎng)感應(yīng),感應(yīng)磁場(chǎng)又會(huì)產(chǎn)生感應(yīng)電動(dòng)勢(shì)來抵制通過線圈中的電流。這種電流與線圈的相互作用關(guān)系稱為電的感抗,也就是電感。

有個(gè)關(guān)鍵詞,就是“閉合回路”,我們見過的電路,基本都是閉合的,不論是直接通過導(dǎo)線直連閉合,還是通過電容耦合過去形成通路。

然而,這個(gè)定義不能讓我們理解一些問題。比如,我們經(jīng)常說的引線電感,過孔電感等等。一段引線和過孔等,它們只是構(gòu)成回路的一部分,然后我們卻能通過公式計(jì)算出來它們的電感值,說明引線和過孔的電感是固定的,它與回路的其它部分沒有關(guān)系。我們?nèi)绾卫斫膺@種回路的局部電感呢?

局部電感、導(dǎo)線的電感

電流流過導(dǎo)線,會(huì)在導(dǎo)線的周圍產(chǎn)生磁場(chǎng)。當(dāng)導(dǎo)線電流變化時(shí),這個(gè)磁場(chǎng)也會(huì)變化,變化的磁場(chǎng)會(huì)產(chǎn)生電場(chǎng),這個(gè)電場(chǎng)將阻礙電流的變化,而阻礙電流變化的這種能力,就可以理解為電感,因?yàn)閷?dǎo)線是回路的一部分,所以這部分電感稱之為局部電感。

實(shí)際上前面所說的回路的總體電感,應(yīng)是整個(gè)回路所有導(dǎo)線相加所得的結(jié)果。

? ? ? ? ? ? ? ? ? ? ? ? ? ??

上圖來源于《信號(hào)完整性與電源完整性分析-第二版》。

本來寫到這里,也差不多能扯明白寄生電感,直導(dǎo)線電感怎么來的。不過,我相信,你現(xiàn)在覺得上面這些都是理所當(dāng)然的,過個(gè)兩天,又一切歸于0。這幾句話更像是結(jié)論,并不知道是怎么來的,頭腦里面也不好建立一個(gè)圖像場(chǎng)景。

為了更為清晰的理解,于是我又多想了,而且產(chǎn)生了新的問題:貌似我記得麥克斯韋方程組說了,變化的磁場(chǎng)產(chǎn)生的電場(chǎng)是環(huán)形電場(chǎng)的,怎么到這了變成了沿著導(dǎo)線了方向了呢?麥克斯韋那是不可能錯(cuò)的了,上圖的作者都出書了,也不至于出錯(cuò)吧。

為了搞清楚,我又只能去翻翻麥克斯韋方程組了,這個(gè)方程組說實(shí)話,看了好多遍,看了忘,忘了看,不過好在,多看幾次,在似懂非懂的道路上,向懂的方向不斷進(jìn)步。

這里主要用到麥克斯韋方程組里面,磁生電的那一個(gè)公式,方程式子我就不列了(原因你懂的)。意思就是,任意取一個(gè)曲面,如果里面通過的磁感線數(shù)量發(fā)生變化,那么會(huì)在這個(gè)曲面感生出電場(chǎng)。示意圖如下(圖片來源于:長(zhǎng)尾科技):

知道了這些,那么上面那個(gè)問題(產(chǎn)生的電場(chǎng)是環(huán)形電場(chǎng)的,怎么到這了變成了沿著導(dǎo)線了方向了呢)就容易明白了,理解過程如下圖。

我們?cè)谕妼?dǎo)線上面和下面對(duì)稱選兩個(gè)面,假如電流在曲面1產(chǎn)生的磁場(chǎng)向上,那么在曲面2產(chǎn)生的磁場(chǎng)方向就是向下的,兩者是相反的。如果電流減小,那么磁場(chǎng)B會(huì)減小,產(chǎn)生的環(huán)形電場(chǎng)如黃色線圈,兩個(gè)曲面的磁場(chǎng)方向不同,所以產(chǎn)生的環(huán)形電場(chǎng)是一個(gè)順時(shí)針,一個(gè)逆時(shí)針。兩個(gè)環(huán)形電場(chǎng)在導(dǎo)線上的疊加,電場(chǎng)方向就是沿導(dǎo)線向右的,也說明了此時(shí)是阻止電流變小的。

總得來說,一段導(dǎo)線上如果有電流變化,那么會(huì)自己產(chǎn)生感應(yīng)電動(dòng)勢(shì)阻止電流的變化,這不就是電感么。

總結(jié)

通過以上的內(nèi)容,個(gè)人認(rèn)為,我們常說的寄生電感,導(dǎo)線電感,等等,其實(shí)都是導(dǎo)線自己的變化電流產(chǎn)生變化磁場(chǎng),而變化磁場(chǎng)又產(chǎn)生反向電場(chǎng)來阻止電流變化,這就是電感的屬性。

麥克斯韋建立了電磁場(chǎng)理論,將電學(xué)、磁學(xué)、光學(xué)統(tǒng)一起來,理解起來是比較困難的,我大學(xué)學(xué)習(xí)的時(shí)候感覺就是天書。不過隨著工作多年,真正想搞清楚一些問題的時(shí)候,最終都會(huì)去翻一翻,理論與實(shí)際結(jié)合,感覺真的是不一樣,誰用誰知道啊。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 信號(hào)完整性
    +關(guān)注

    關(guān)注

    68

    文章

    1383

    瀏覽量

    95169
  • 寄生電感
    +關(guān)注

    關(guān)注

    1

    文章

    153

    瀏覽量

    14550

原文標(biāo)題:寄生電感怎么來的

文章出處:【微信號(hào):gh_3a15b8772f73,微信公眾號(hào):硬件工程師煉成之路】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    光學(xué)薄膜制備設(shè)備介紹之蒸發(fā)鍍膜機(jī)

    薄膜光學(xué)的來源一直可追溯到18世紀(jì)的“牛頓環(huán)”現(xiàn)象,人類首次發(fā)現(xiàn)并進(jìn)而解釋了光的干涉過程。1873 年麥克斯韋(Maxwell)的巨著《論電與磁》的問世,進(jìn)一步奠定了薄膜光學(xué)的理論基礎(chǔ)。至此,作為薄膜光學(xué)的兩大基礎(chǔ)理論——電磁場(chǎng)理論和光的干涉理論全部確立。
    的頭像 發(fā)表于 09-14 09:58 ?112次閱讀
    光學(xué)薄膜制備設(shè)備介紹之蒸發(fā)鍍膜機(jī)

    AnyWay零磁通電流傳感器的工作原理

    19世紀(jì),英國(guó)物理學(xué)家詹姆斯·麥克斯韋建立的一組描述電場(chǎng)、磁場(chǎng)與電荷密度、電流密度之間關(guān)系的偏微分方程。麥克斯韋認(rèn)為,變化的磁場(chǎng)之所以會(huì)使導(dǎo)體產(chǎn)生電流,是因?yàn)樽兓拇艌?chǎng)產(chǎn)生了渦旋電場(chǎng)。 零磁通電
    的頭像 發(fā)表于 06-27 10:17 ?256次閱讀
    AnyWay零磁通電流傳感器的工作原理

    禾賽科技與Momenta合作進(jìn)一步拓寬智能駕駛產(chǎn)品戰(zhàn)略布局

    2024年4月19日,全球激光雷達(dá)市場(chǎng)的領(lǐng)軍者禾賽科技,和全球領(lǐng)先的自動(dòng)駕駛公司Momenta在禾賽麥克斯韋智造中心簽署戰(zhàn)略合作協(xié)議。
    的頭像 發(fā)表于 04-20 14:22 ?1014次閱讀
    禾賽科技與Momenta合作進(jìn)一步拓寬智能駕駛產(chǎn)品戰(zhàn)略布局

    了解幾位發(fā)明天線的先驅(qū)

    1864年左右,蘇格蘭物理學(xué)家詹姆斯·克拉克·麥克斯韋(James Clerk Maxwell)提出了無線電理論。
    發(fā)表于 03-28 13:54 ?723次閱讀
    了解幾位發(fā)明天線的先驅(qū)

    什么是寄生電感?如何計(jì)算過孔的寄生電感

    在PCB(PrintedCircuitBoard,印刷電路板)設(shè)計(jì)中,過孔寄生電感是一個(gè)重要的考慮因素。當(dāng)電流通過PCB的過孔時(shí),由于過孔的幾何形狀和布局,會(huì)產(chǎn)生一定的寄生電感。這種
    的頭像 發(fā)表于 03-15 08:19 ?1925次閱讀
    什么是<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>?如何計(jì)算過孔的<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>?

    寄生電感到底是什么?如何計(jì)算過孔的寄生電感?

    式中可以看出:過孔的直徑對(duì)寄生電感的影響較小,而長(zhǎng)度才是影響寄生電感的關(guān)鍵因素。所以,在設(shè)計(jì)電路板時(shí),要盡量減小過孔的長(zhǎng)度,以提高電路的性
    的頭像 發(fā)表于 02-27 14:28 ?898次閱讀

    詳解MOS管的寄生電感寄生電容

    寄生電容和寄生電感是指在電路中存在的非意圖的電容和電感元件。 它們通常是由于電路布局、線路長(zhǎng)度、器件之間的物理距離等因素引起的。
    的頭像 發(fā)表于 02-21 09:45 ?2051次閱讀
    詳解MOS管的<b class='flag-5'>寄生</b><b class='flag-5'>電感</b>和<b class='flag-5'>寄生</b>電容

    寄生電感的介紹

    寄生電感的介紹
    的頭像 發(fā)表于 11-29 16:41 ?1810次閱讀
    <b class='flag-5'>寄生</b><b class='flag-5'>電感</b>的介紹

    寄生電感的影響

    寄生電感的影響
    的頭像 發(fā)表于 11-29 16:32 ?766次閱讀
    <b class='flag-5'>寄生</b><b class='flag-5'>電感</b>的影響

    耐能獲IEEE榮譽(yù)獎(jiǎng)?wù)?,?qiáng)大研發(fā)實(shí)力再獲認(rèn)可

    11月8日,蘇格蘭愛丁堡皇家學(xué)會(huì)現(xiàn)場(chǎng),耐能聯(lián)合創(chuàng)始人張懋中教授因其卓越的貢獻(xiàn)獲授2023 IEEE/RSE詹姆斯·克拉克·麥克斯韋獎(jiǎng)(IEEE/RSE James Clerk Maxwell Medal)獎(jiǎng)?wù)隆?/div>
    的頭像 發(fā)表于 11-21 15:46 ?454次閱讀

    喜報(bào)|耐能獲IEEE榮譽(yù)獎(jiǎng)?wù)?,?qiáng)大研發(fā)實(shí)力再獲認(rèn)可

    11月8日,蘇格蘭愛丁堡皇家學(xué)會(huì)現(xiàn)場(chǎng), 耐能聯(lián)合創(chuàng)始人張懋中教授因其卓越的貢獻(xiàn)獲授2023 IEEE/RSE詹姆斯·克拉克·麥克斯韋獎(jiǎng)(IEEE/RSE James Clerk Maxwell
    發(fā)表于 11-21 14:04 ?239次閱讀
    喜報(bào)|耐能獲IEEE榮譽(yù)獎(jiǎng)?wù)?,?qiáng)大研發(fā)實(shí)力再獲認(rèn)可

    激光雷達(dá)如何加速賦能城市NOA功能落地?

    2023 年 11 月 4 號(hào),“激光雷達(dá)助力城市 NOA 駛?cè)肓慨a(chǎn)快車道”技術(shù)分享會(huì)在禾賽麥克斯韋智造中心舉辦。禾賽戰(zhàn)略負(fù)責(zé)人施葉舟、輕舟智航產(chǎn)品負(fù)責(zé)人許諾,與行業(yè)媒體專家、先鋒用戶等,一起就激光雷達(dá)如何加速賦能城市 NOA 功能落地進(jìn)行了深入交流。
    的頭像 發(fā)表于 11-09 10:14 ?546次閱讀
    激光雷達(dá)如何加速賦能城市NOA功能落地?

    傳統(tǒng)的差分天線及與之對(duì)應(yīng)的單端口天線介紹

    1886 年至 1889 年間,赫茲進(jìn)行了一系列實(shí)驗(yàn),其中最著名的實(shí)驗(yàn)是他用自己發(fā)明的偶極子與環(huán)天線發(fā)現(xiàn)了電磁波的存在,從而證明了麥克斯韋理論的正確性。偶極子與環(huán)天線成了最早的天線,它們均是差分天線1。
    的頭像 發(fā)表于 10-11 09:23 ?2381次閱讀
    傳統(tǒng)的差分天線及與之對(duì)應(yīng)的單端口天線介紹

    如何使用壓縮空氣制冷?渦流管—麥克斯韋妖管

    在炎熱的夏天,我們總是渴望空氣變得涼爽些。通過一個(gè)管子就可以實(shí)現(xiàn)我們的目的。這個(gè)神奇的管子叫做渦流管。
    的頭像 發(fā)表于 09-27 18:22 ?5116次閱讀
    如何使用壓縮空氣制冷?渦流管—<b class='flag-5'>麥克斯韋</b>妖管

    高速電路信號(hào)完整性學(xué)習(xí)筆記1

    信號(hào)完整性分析是以電磁場(chǎng)理論作為基本理論,所涉及的基本電磁理論基礎(chǔ)包括麥克斯韋方程組、傳輸線理論、匹配理論等。
    的頭像 發(fā)表于 09-25 14:20 ?600次閱讀
    高速電路信號(hào)完整性學(xué)習(xí)筆記1