0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用圖神經(jīng)網(wǎng)絡(luò)讓谷歌地圖實現(xiàn)新突破

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:搜狐網(wǎng) ? 作者:搜狐網(wǎng) ? 2020-09-08 10:11 ? 次閱讀

公交車、出租車等交通工具的到達(dá)時間是影響公眾出行的一大因素。所以,預(yù)估到達(dá)時間(ETA)準(zhǔn)確率成為非常實際的研究課題。近日,DeepMind 與谷歌地圖展開合作,利用圖神經(jīng)網(wǎng)絡(luò)等 ML 技術(shù),極大了提升了柏林、東京、悉尼等大城市的實時 ETA 準(zhǔn)確率。

很多人使用谷歌地圖(Google Maps)獲取精確的交通預(yù)測和預(yù)估到達(dá)時間(Estimated Time of Arrival,ETA)。這是很重要的工具,尤其是當(dāng)你將途經(jīng)交通擁堵路段或者需要按時參加重要的會議。 此外,對于拼車服務(wù)公司等企業(yè)而言,這些功能也很有用。它們使用 Google Maps 平臺獲取接送時間信息并基于乘車時間估計價格。 DeepMind 研究者與 Google Maps 團(tuán)隊展開合作,嘗試通過圖神經(jīng)網(wǎng)絡(luò)等高級機(jī)器學(xué)習(xí)技術(shù),提升柏林、雅加達(dá)、圣保羅、悉尼、東京和華盛頓哥倫比亞特區(qū)等地的實時 ETA 準(zhǔn)確率,最高提升了 50%。下圖為這些城市的 ETA 提升率:

Google Maps 如何預(yù)測 ETA 為了計算 ETA,Google Maps 分析了世界各地不同路段的實時交通數(shù)據(jù)。這些數(shù)據(jù)為 Google Maps 提供了目前交通狀況的精確圖景,但是它卻無法幫助司機(jī)預(yù)計車程時間是 10 分鐘、20 分鐘,還是 50 分鐘。 所以,為了精確地預(yù)測未來交通狀況,Google Maps 使用機(jī)器學(xué)習(xí)將全球道路的實時交通狀況和歷史交通模式結(jié)合起來。這一過程非常復(fù)雜,原因很多。例如,早晚高峰每天都會有,但每一天、每一月的高峰期確切時間有很大不同。道路質(zhì)量、限速、交通事故等因素也增加了交通預(yù)測模型的復(fù)雜度。 DeepMind 團(tuán)隊與 Google Maps 合作嘗試提升 ETA 準(zhǔn)確率。Google Maps 對超過 97% 的行程有著精確的 ETA 預(yù)測,DeepMind 與 Google Maps 的合作目的是將剩下那些預(yù)測不準(zhǔn)確的情況最小化,例如臺中(Taichung)的 ETA 預(yù)測準(zhǔn)確率提升了 50% 多。 為了在全球范圍內(nèi)實現(xiàn)這一目的,DeepMind 利用了一種通用機(jī)器學(xué)習(xí)架構(gòu)——圖神經(jīng)網(wǎng)絡(luò)(GNN),通過向模型添加關(guān)系學(xué)習(xí)偏置來進(jìn)行時空推理,進(jìn)而建?,F(xiàn)實世界道路網(wǎng)絡(luò)的連通性。具體步驟如下: 將世界上的道路分割為超級路段(Supersegment) 該團(tuán)隊將道路網(wǎng)絡(luò)分割為包含多個鄰近路段的「超級路段」,超級路段都具有極大的交通流量。目前,Google Maps 交通預(yù)測系統(tǒng)包括以下組件:

路線分析器:具備數(shù) TB 的交通信息,可用于構(gòu)建超級路段;

新型 GNN 模型:使用多個目標(biāo)函數(shù)進(jìn)行優(yōu)化,能夠預(yù)測每個超級路段的行程時間。

Google Maps 確定最優(yōu)路線和行程時間的模型架構(gòu)圖示。 用新型機(jī)器學(xué)習(xí)架構(gòu)進(jìn)行交通預(yù)測 利用超級路段創(chuàng)建估計行程時間的機(jī)器學(xué)習(xí)系統(tǒng),所面臨的最大挑戰(zhàn)是架構(gòu)問題。如何以任意準(zhǔn)確率表示連接路段的規(guī)??勺儤颖?,進(jìn)而保證單個模型也能預(yù)測成功? DeepMind 團(tuán)隊最初的概念證明始于一種簡單明了的方法,該方法盡可能地利用現(xiàn)有的交通系統(tǒng),特別是已有的路網(wǎng)分割和相關(guān)的實時數(shù)據(jù) pipeline。這意味著超級路段覆蓋了一組路段,其中每個路段都有特定的長度和相應(yīng)的速度特征。 首先,該團(tuán)隊為每個超級路段訓(xùn)練了一個全連接神經(jīng)網(wǎng)絡(luò)模型。初步結(jié)果良好,表明神經(jīng)網(wǎng)絡(luò)在預(yù)測行程時間方面是很有潛力的。但是,鑒于超級路段的可變規(guī)模,該團(tuán)隊需要為每個超級路段單獨訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。要想實現(xiàn)大規(guī)模部署,則必須訓(xùn)練數(shù)百萬個這樣的模型,這就對基礎(chǔ)設(shè)施構(gòu)成了巨大的挑戰(zhàn)。 因此,該團(tuán)隊開始研究能夠處理可變長度序列的模型,例如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)。但是,向 RNN 添加來自道路網(wǎng)絡(luò)的結(jié)構(gòu)是很難的。于是,研究者決定使用圖神經(jīng)網(wǎng)絡(luò)。在對交通情況進(jìn)行建模時,車輛如何穿過道路網(wǎng)絡(luò)是該研究的關(guān)注點,而圖神經(jīng)網(wǎng)絡(luò)可以對網(wǎng)絡(luò)動態(tài)和信息傳播進(jìn)行建模。 該團(tuán)隊提出的模型將局部道路網(wǎng)絡(luò)視為一個圖,其中每個路段對應(yīng)一個節(jié)點,連接兩個路段(節(jié)點)的邊要么在同一條道路上,要么通過交叉點(路口)連接。在圖神經(jīng)網(wǎng)絡(luò)中執(zhí)行消息傳遞算法時,其傳遞的消息及其對邊和節(jié)點狀態(tài)的影響均由神經(jīng)網(wǎng)絡(luò)學(xué)得。從這個角度看,超級路段是根據(jù)交通密度隨機(jī)采樣的道路子圖。因此,使用這些采樣的子圖能夠訓(xùn)練單個模型,且單個模型可以進(jìn)行大規(guī)模部署。

圖神經(jīng)網(wǎng)絡(luò)通過泛化「相似度(proximity)」概念,擴(kuò)展了卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)所施加的學(xué)習(xí)偏置(learning bias),進(jìn)而具備任意復(fù)雜度的連接,不僅可以處理道路前后方的交通情況,還可以處理相鄰和相交道路的情況。在圖神經(jīng)網(wǎng)絡(luò)中,相鄰節(jié)點之間互相傳遞消息。在保持這種結(jié)構(gòu)的情況下,研究者施加了局部偏置,節(jié)點將更容易依賴于相鄰節(jié)點(這僅需要一個消息傳遞步)。這些機(jī)制使圖神經(jīng)網(wǎng)絡(luò)可以更高效地利用道路網(wǎng)絡(luò)的連通性結(jié)構(gòu)。 實驗表明,將考慮范圍擴(kuò)展到不屬于主要道路的相鄰道路能夠提高預(yù)測能力。例如,考慮小路上的擁堵狀況對大路交通情況的影響。通過跨越多個交叉路口,該模型能夠預(yù)測轉(zhuǎn)彎處的延誤、并道引起的延誤,以及走走停停交通狀況的通行時間。圖神經(jīng)網(wǎng)絡(luò)在組合空間上的泛化能力使得該研究的建模技術(shù)具備強(qiáng)大能力。 每個超級路段的長度和復(fù)雜度可能各有不同(從簡單的兩段路到包含了數(shù)百個節(jié)點的較長路徑),但它們都可以使用同一個圖神經(jīng)網(wǎng)絡(luò)模型進(jìn)行處理。 從?基礎(chǔ)研究到生產(chǎn)級機(jī)器學(xué)習(xí)模型 在學(xué)術(shù)研究中,生產(chǎn)級機(jī)器學(xué)習(xí)系統(tǒng)存在一個常常被忽視的巨大挑戰(zhàn),即同一模型在多次訓(xùn)練運行中會出現(xiàn)巨大的差異。雖然在很多學(xué)術(shù)研究中,細(xì)微的訓(xùn)練質(zhì)量差別可以簡單地作為 poor 初始化被丟棄,但數(shù)百萬用戶的細(xì)微不一致累加在一起就會產(chǎn)生極大的影響。 因此,在將該模型投入生產(chǎn)時,圖神經(jīng)網(wǎng)絡(luò)對訓(xùn)練中這種變化的魯棒性就成為了重中之重。研究者發(fā)現(xiàn),圖神經(jīng)網(wǎng)絡(luò)對訓(xùn)練過程中的變化特別敏感,造成這種不穩(wěn)定性的原因是訓(xùn)練中使用的圖結(jié)構(gòu)之間存在巨大差異。單批次圖可以涵蓋從兩節(jié)點小圖到 100 節(jié)點以上的大圖。 然而,在反復(fù)試錯之后,研究者在有監(jiān)督設(shè)置下采用了一種新型強(qiáng)化學(xué)習(xí)技術(shù),解決了以上問題。 在訓(xùn)練機(jī)器學(xué)習(xí)系統(tǒng)的過程中,系統(tǒng)的學(xué)習(xí)率決定了自身對新信息的「可塑性」。隨著時間推移,研究人員常常會降低模型的學(xué)習(xí)率,這是因為學(xué)習(xí)新東西和忘記已經(jīng)學(xué)得的重要特征之間存在著權(quán)衡,就像人類從兒童到成人的成長歷程一樣。 所以,在預(yù)定義訓(xùn)練階段之后,研究者首先采用一種指數(shù)衰減學(xué)習(xí)率計劃來穩(wěn)定參數(shù)。此外,研究者還探究和分析了以往研究中被證明有效的模型集成技術(shù),從而觀察是否可以減少訓(xùn)練運行中的模型差異。 最后,研究者發(fā)現(xiàn),最成功的解決方案是使用 MetaGradient 來動態(tài)調(diào)整訓(xùn)練期間的學(xué)習(xí)率,從而可以有效地使系統(tǒng)學(xué)得自身最優(yōu)的學(xué)習(xí)率計劃。通過在訓(xùn)練期間自動地調(diào)整學(xué)習(xí)率,該模型不僅實現(xiàn)了較以往更高的質(zhì)量,而且還學(xué)會了自動降低學(xué)習(xí)率。最終實現(xiàn)了更穩(wěn)定的結(jié)果,使得該新型架構(gòu)能夠應(yīng)用于生產(chǎn)。 通過自定義損失函數(shù)實現(xiàn)模型泛化 雖然建模系統(tǒng)的最終目標(biāo)是減少行程預(yù)估中的誤差,但是研究者發(fā)現(xiàn),利用多個損失函數(shù)(適當(dāng)加權(quán))的線性組合極大地提升了模型的泛化能力。具體而言,研究者利用模型權(quán)重的正則化因子、全局遍歷時間上的 L_2 和 L_1 損失、以及圖中每個節(jié)點的 Huber 和負(fù)對數(shù)似然(negative-log likelihood, NLL)損失,制定了一個多損失目標(biāo)。 通過結(jié)合這些損失,研究者能夠指導(dǎo)模型并避免訓(xùn)練數(shù)據(jù)集的過擬合。雖然對訓(xùn)練過程的質(zhì)量衡量標(biāo)準(zhǔn)并沒有變化,但是訓(xùn)練中出現(xiàn)的提升更直接地轉(zhuǎn)化到留出(held-out)測試集和端到端實驗中。 目前,研究者正在探究,在以減少行程估計誤差為指導(dǎo)指標(biāo)的情況下,MetaGradient 技術(shù)是否也可以用來改變訓(xùn)練過程中多成分損失函數(shù)的構(gòu)成。這項研究受到先前在強(qiáng)化學(xué)習(xí)中取得成功的 MetaGradient 的啟發(fā),并且早期實驗也顯示出了不錯的結(jié)果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:圖神經(jīng)網(wǎng)絡(luò)讓預(yù)估到達(dá)準(zhǔn)確率提升50%,谷歌地圖實現(xiàn)新突破

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    遞歸神經(jīng)網(wǎng)絡(luò)實現(xiàn)方法

    (Recurrent Neural Network,通常也簡稱為RNN,但在此處為區(qū)分,我們將循環(huán)神經(jīng)網(wǎng)絡(luò)稱為Recurrent RNN)不同,遞歸神經(jīng)網(wǎng)絡(luò)更側(cè)重于處理樹狀或結(jié)構(gòu)的數(shù)據(jù),如句法分析樹、自然語言的語法結(jié)構(gòu)等。以下
    的頭像 發(fā)表于 07-10 17:02 ?196次閱讀

    如何在FPGA上實現(xiàn)神經(jīng)網(wǎng)絡(luò)

    可編程門陣列(FPGA)作為一種靈活、高效的硬件實現(xiàn)方式,為神經(jīng)網(wǎng)絡(luò)的加速提供了新的思路。本文將從FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)的基本原理、關(guān)鍵技術(shù)、實現(xiàn)
    的頭像 發(fā)表于 07-10 17:01 ?1089次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?379次閱讀

    如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練

    ,使得神經(jīng)網(wǎng)絡(luò)的創(chuàng)建、訓(xùn)練和仿真變得更加便捷。本文將詳細(xì)介紹如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練,包括網(wǎng)絡(luò)創(chuàng)建、數(shù)據(jù)預(yù)處理、訓(xùn)練過程、參數(shù)調(diào)整以及仿真預(yù)測等步驟。
    的頭像 發(fā)表于 07-08 18:26 ?842次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?383次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?448次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?366次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)原理、結(jié)構(gòu)
    的頭像 發(fā)表于 07-03 10:49 ?388次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?518次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    、訓(xùn)練過程以及應(yīng)用場景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋深度學(xué)習(xí)模型,其核心思想是利用卷積操作提取輸入數(shù)據(jù)的局部特征,并通過多層結(jié)構(gòu)進(jìn)
    的頭像 發(fā)表于 07-03 09:15 ?220次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其
    的頭像 發(fā)表于 07-02 16:47 ?324次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?1013次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種
    的頭像 發(fā)表于 07-01 14:16 ?342次閱讀

    利用深度循環(huán)神經(jīng)網(wǎng)絡(luò)對心電降噪

    具體的軟硬件實現(xiàn)點擊 http://mcu-ai.com/ MCU-AI技術(shù)網(wǎng)頁_MCU-AI 我們提出了一種利用由長短期記憶 (LSTM) 單元構(gòu)建的深度循環(huán)神經(jīng)網(wǎng)絡(luò)來降 噪心電
    發(fā)表于 05-15 14:42

    詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一
    的頭像 發(fā)表于 01-11 10:51 ?1604次閱讀
    詳解深度學(xué)習(xí)、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用