0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SiC MOSFET的EMI和開關(guān)損耗解決方案解析

電子設(shè)計(jì) ? 來源:EEWORLD ? 作者:EEWORLD ? 2021-02-02 11:54 ? 次閱讀

碳化硅(SiC)MOSFET的快速開關(guān)速度,高額定電壓和低RDSon使其對(duì)于不斷尋求在提高效率和功率密度的同時(shí)保持系統(tǒng)簡(jiǎn)單性的電源設(shè)計(jì)人員具有很高的吸引力。

但是,由于它們的快速開關(guān)速度會(huì)產(chǎn)生高振鈴持續(xù)時(shí)間的高漏源電壓(VDS)尖峰,因此會(huì)引入EMI,尤其是在高電流水平下。

了解VDS尖峰和振鈴

寄生電感是SiC MOSFET VDS尖峰和振鈴的主要原因。查看關(guān)斷波形(圖1),柵極-源極電壓(VGS)為18V至0V。關(guān)斷的漏極電流為50A,VDS為800V。SiC MOSFET的快速開關(guān)速度會(huì)導(dǎo)致高VDS尖峰和較長(zhǎng)的振鈴時(shí)間。這種尖峰會(huì)降低設(shè)備的設(shè)計(jì)裕量,以應(yīng)對(duì)閃電條件或負(fù)載的突然變化,并且較長(zhǎng)的振鈴時(shí)間會(huì)引入EMI。在高電流水平下,此事件更加明顯。

pIYBAGAYzCGAZaIFAAIBBEOAGY4749.png

圖1 VDS尖峰和關(guān)斷時(shí)通過SiC MOSFET產(chǎn)生的振鈴(1200V 40mOhm)

常見的EMI去除技術(shù)

抑制EMI的常規(guī)方法是降低通過器件的電流速率(dI / dt),這是通過使用高柵極電阻(RG)來實(shí)現(xiàn)的。但是,較高的RG會(huì)顯著增加開關(guān)損耗,從而損失效率。

抑制EMI的另一種方法是降低電源環(huán)路的雜散電感。但是,要實(shí)現(xiàn)這一點(diǎn),PCB的布局需要更小的電感。但是,最大程度地減小電源環(huán)路是有限的,并且必須遵守最小間距和間隙安全規(guī)定。使用較小的封裝也會(huì)影響熱性能。

濾波器設(shè)計(jì)可用于幫助滿足EMI要求并減輕系統(tǒng)權(quán)衡。控制技術(shù)(例如,頻率抖動(dòng))還可以降低電源的EMI噪聲。

使用RC緩沖器

使用簡(jiǎn)單的RC緩沖器是一種更有效的方法。它可控制VDS尖峰并以更高的效率和可忽略的關(guān)閉延遲來縮短振鈴時(shí)間。借助更快的dv/dt和額外的電容器,緩沖電路具有更高的位移電流,從而降低了關(guān)斷過渡時(shí)的ID和VDS重疊。

雙脈沖測(cè)試(DPT)證明了RC緩沖器的有效性。它是帶有感性負(fù)載的半橋。橋的高邊和低邊都使用相同的器件,在低邊測(cè)量了VGS,VDS和ID(圖2)。電流互感器(CT)同時(shí)測(cè)量設(shè)備和緩沖電流。因此,測(cè)得的總開關(guān)損耗包括器件損耗和緩沖損耗。

o4YBAGAYzC2AUHoeAACyEw2yc7w179.png

圖2.半橋配置(頂部和底部使用相同的設(shè)備)

RC緩沖器只是一個(gè)200pF電容器和一個(gè)10Ω電阻器,串聯(lián)在SiC MOSFET的漏極和源極之間。

o4YBAGAYzDyAY9ETAAGu_T6Djog427.png

圖3:RC緩沖器(左)比高RG(右)更有效地控制關(guān)斷EMI

在圖3中,比較了圖1中相同設(shè)備的關(guān)閉狀態(tài)。左波形使用具有低RG(關(guān))的RC緩沖器,而右波形具有高RG(關(guān))且無緩沖器。兩種方法都限制了關(guān)斷峰值尖峰漏極——源極電壓VDS。但是,通過將振鈴時(shí)間減少到僅33ns,緩沖電路更加有效,并且延遲時(shí)間也更短。

pIYBAGAYzFCAaBJQAAF2vErR75Y139.png

圖4.比較顯示,使用RC緩沖器在開啟時(shí)影響很小

圖4比較了帶有RC緩沖器(左)和不帶有RC緩沖器的5ΩRG(開)下的波形。 RC緩沖器的導(dǎo)通波形具有稍高的反向恢復(fù)峰值電流(Irr),但沒有其他明顯的差異。

RC緩沖器比高RG(關(guān))更有效地控制VDS尖峰和振鈴持續(xù)時(shí)間,但這會(huì)影響效率嗎?

o4YBAGAYzGaAFHRyAAECbDIaI3c160.png

圖5.緩沖器和高RG(off)之間的開關(guān)損耗(Eoff,Eon)比較

在48A時(shí),高RG(關(guān))的關(guān)斷開關(guān)損耗是低RG(關(guān))的緩沖器的兩倍多,幾乎與不使用緩沖器的開關(guān)損耗相當(dāng)。因此,可以得出這樣的結(jié)論:緩沖器效率更高,可以更快地切換和控制VDS尖峰并更有效地振鈴。從導(dǎo)通開關(guān)損耗來看,緩沖器只會(huì)稍微增加Eon。

pIYBAGAYzHuAf5DeAAHLGvWNdm4459.png

圖6.緩沖器與高RG(關(guān)閉)的總開關(guān)損耗(Etotal)的比較

為了更好地理解整體效率,將Eoff和Eon一起添加了Etotal(圖6)。全速切換時(shí),緩沖器在18A以上時(shí)效率更高。對(duì)于以40A / 40kHz開關(guān)的40mΩ器件,使用RC緩沖器的高和低RG(關(guān))之間的損耗差為11W??傊?,與使用高RG(關(guān))相比,緩沖器是一種將EMI和開關(guān)損耗降至最低的更簡(jiǎn)單,更有效的方法。

隨著第四代SiC器件進(jìn)入市場(chǎng),這種簡(jiǎn)單的解決方案將繼續(xù)使工程師進(jìn)行設(shè)計(jì)以獲得最佳效率。

編輯:hfy

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    142

    文章

    6936

    瀏覽量

    211738
  • emi
    emi
    +關(guān)注

    關(guān)注

    53

    文章

    3545

    瀏覽量

    126762
  • 緩沖器
    +關(guān)注

    關(guān)注

    6

    文章

    1903

    瀏覽量

    45327
  • sic器件
    +關(guān)注

    關(guān)注

    1

    文章

    54

    瀏覽量

    15511
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    影響MOSFET開關(guān)損耗的因素

    MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金屬-氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管)的開關(guān)損耗是電子工程中一個(gè)關(guān)鍵的性能參數(shù),它直接影響到電路的效率、熱設(shè)計(jì)和可靠性。下面將詳細(xì)闡述
    的頭像 發(fā)表于 09-14 16:11 ?182次閱讀

    碳化硅MOSFET開關(guān)尖峰問題與TVS保護(hù)方案

    SiC MOSFET開關(guān)尖峰問題,并介紹使用瞬態(tài)電壓抑制二極管(TVS)進(jìn)行保護(hù)的優(yōu)勢(shì)和上海雷卯電子提供的解決方案。 1. SiC
    的頭像 發(fā)表于 08-15 17:17 ?1688次閱讀
    碳化硅<b class='flag-5'>MOSFET</b>的<b class='flag-5'>開關(guān)</b>尖峰問題與TVS保護(hù)<b class='flag-5'>方案</b>

    差分探頭在測(cè)量開關(guān)損耗中的應(yīng)用

    開關(guān)損耗是電力電子設(shè)備中的一個(gè)重要性能指標(biāo),它直接影響到設(shè)備的效率和熱管理。差分探頭作為一種高精度的測(cè)量工具,在開關(guān)損耗的測(cè)量中發(fā)揮著關(guān)鍵作用。本文將介紹差分探頭的基本原理,探討其在開關(guān)損耗測(cè)量中
    的頭像 發(fā)表于 08-09 09:47 ?166次閱讀
    差分探頭在測(cè)量<b class='flag-5'>開關(guān)損耗</b>中的應(yīng)用

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff
    的頭像 發(fā)表于 06-20 09:53 ?276次閱讀
    第二代<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>關(guān)斷<b class='flag-5'>損耗</b>Eoff

    如何使用示波器測(cè)量電源開關(guān)損耗

    電源開關(guān)損耗是電子電路中一個(gè)重要的性能指標(biāo),它反映了開關(guān)器件在開關(guān)過程中產(chǎn)生的能量損失。準(zhǔn)確測(cè)量電源開關(guān)損耗對(duì)于優(yōu)化電路設(shè)計(jì)、提高系統(tǒng)效率具有重要意義。本文將詳細(xì)介紹使用示波器測(cè)量電源
    的頭像 發(fā)表于 05-27 16:03 ?679次閱讀

    水下航行器電機(jī)的SiC MOSFET逆變器設(shè)計(jì)

    利用 SiC 功率器件開關(guān)頻率高、開關(guān)損耗低等優(yōu)點(diǎn), 將 SiC MOSFET 應(yīng)用于水下航行器大功率高速電機(jī)逆變器模塊, 對(duì)軟硬件進(jìn)行設(shè)計(jì)
    發(fā)表于 03-13 14:31 ?256次閱讀
    水下航行器電機(jī)的<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>逆變器設(shè)計(jì)

    反激CCM模式的開通損耗和關(guān)斷損耗詳解

    開關(guān)損耗測(cè)試是電源調(diào)試中非常關(guān)鍵的環(huán)節(jié),開關(guān)損耗測(cè)試對(duì)于器件評(píng)估非常關(guān)鍵,但很多工程師對(duì)開關(guān)損耗的測(cè)量還停留在人工計(jì)算的感性認(rèn)知上。電源工程師們都知道開關(guān)MOS在整個(gè)電源系統(tǒng)里面的
    的頭像 發(fā)表于 01-20 17:08 ?2559次閱讀
    反激CCM模式的開通<b class='flag-5'>損耗</b>和關(guān)斷<b class='flag-5'>損耗</b>詳解

    新型溝槽SiCMOSFET器件研究

    SiC具有高效節(jié)能、穩(wěn)定性好、工作頻率高、能量密度高等優(yōu)勢(shì),SiC溝槽MOSFET(UMOSFET)具有高溫工作能力、低開關(guān)損耗、低導(dǎo)通損耗
    的頭像 發(fā)表于 12-27 09:34 ?993次閱讀
    新型溝槽<b class='flag-5'>SiC</b>基<b class='flag-5'>MOSFET</b>器件研究

    SIC MOSFET在電路中的作用是什么?

    MOSFET的基本結(jié)構(gòu)。SIC MOSFET是一種由碳化硅材料制成的傳導(dǎo)類型晶體管。與傳統(tǒng)的硅MOSFET相比,SIC
    的頭像 發(fā)表于 12-21 11:27 ?1287次閱讀

    怎么提高SIC MOSFET的動(dòng)態(tài)響應(yīng)?

    可行的解決方案。 首先,讓我們了解一下SIC MOSFET的基本原理和結(jié)構(gòu)。SIC(碳化硅)MOSFET是一種基于碳化硅材料制造的金屬氧化物
    的頭像 發(fā)表于 12-21 11:15 ?467次閱讀

    SiC MOSFET 和Si MOSFET寄生電容在高頻電源中的損耗對(duì)比

    SiC MOSFET 和Si MOSFET寄生電容在高頻電源中的損耗對(duì)比
    的頭像 發(fā)表于 12-05 14:31 ?596次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 和Si <b class='flag-5'>MOSFET</b>寄生電容在高頻電源中的<b class='flag-5'>損耗</b>對(duì)比

    深入剖析高速SiC MOSFET開關(guān)行為

    深入剖析高速SiC MOSFET開關(guān)行為
    的頭像 發(fā)表于 12-04 15:26 ?748次閱讀
    深入剖析高速<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的<b class='flag-5'>開關(guān)</b>行為

    使用SiC MOSFET時(shí)如何盡量降低電磁干擾和開關(guān)損耗

    使用SiC MOSFET時(shí)如何盡量降低電磁干擾和開關(guān)損耗
    的頭像 發(fā)表于 11-23 09:08 ?780次閱讀
    使用<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>時(shí)如何盡量降低電磁干擾和<b class='flag-5'>開關(guān)損耗</b>

    如何平衡MOSFET提高電源效率的優(yōu)化方案

    MOSFET 的選擇關(guān)乎效率,設(shè)計(jì)人員需要在其傳導(dǎo)損耗開關(guān)損耗之間進(jìn)行權(quán)衡。傳導(dǎo)損耗發(fā)生在在 MOSFET 關(guān)閉期間,由于電流流過導(dǎo)通電阻
    發(fā)表于 11-15 16:12 ?337次閱讀
    如何平衡<b class='flag-5'>MOSFET</b>提高電源效率的優(yōu)化<b class='flag-5'>方案</b>

    同步buck電路的mos自舉驅(qū)動(dòng)可以降低mos的開關(guān)損耗嗎?

    同步buck電路的mos自舉驅(qū)動(dòng)可以降低mos的開關(guān)損耗嗎? 同步buck電路的MOS自舉驅(qū)動(dòng)可以降低MOS的開關(guān)損耗 同步Buck電路是一種常見的DC/DC降壓轉(zhuǎn)換器,它具有高效、穩(wěn)定、可靠的特點(diǎn)
    的頭像 發(fā)表于 10-25 11:45 ?884次閱讀