0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

FPGA中復(fù)位電路產(chǎn)生亞穩(wěn)態(tài)概述與理論分析

電子工程師 ? 來源:FPGA設(shè)計(jì)論壇 ? 作者:FPGA設(shè)計(jì)論壇 ? 2020-10-25 09:50 ? 次閱讀

亞穩(wěn)態(tài)概述

01亞穩(wěn)態(tài)發(fā)生原因

FPGA 系統(tǒng)中,如果數(shù)據(jù)傳輸中不滿足觸發(fā)器的 Tsu 和 Th 不滿足,或者復(fù)位過程中復(fù)位信號(hào)的釋放相對(duì)于有效時(shí)鐘沿的恢復(fù)時(shí)間(recovery time)不滿足,就可能產(chǎn)生亞穩(wěn)態(tài),此時(shí)觸發(fā)器輸出端 Q 在有效時(shí)鐘沿之后比較長的一段時(shí)間處于不確定的狀態(tài),在這段時(shí)間里 Q 端在 0 和 1 之間處于振蕩狀態(tài),而不是等于數(shù)據(jù)輸入端 D 的值。這段時(shí)間稱為決斷時(shí)間(resolution time)。經(jīng)過 resolution time 之后 Q 端將穩(wěn)定到 0 或 1 上,但是穩(wěn)定到 0 或者 1,是隨機(jī)的,與輸入沒有必然的關(guān)系。

02 亞穩(wěn)態(tài)發(fā)生場(chǎng)合

只要系統(tǒng)中有異步元件,亞穩(wěn)態(tài)就是無法避免的,亞穩(wěn)態(tài)主要發(fā)生在異步信號(hào)檢測(cè)、跨時(shí)鐘域信號(hào)傳輸以及復(fù)位電路等常用設(shè)計(jì)中。

03 亞穩(wěn)態(tài)危害

由于產(chǎn)生亞穩(wěn)態(tài)后,寄存器Q 端輸出在穩(wěn)定下來之前可能是毛刺、振蕩、固定的某一電壓值。在信號(hào)傳輸中產(chǎn)生亞穩(wěn)態(tài)就會(huì)導(dǎo)致與其相連其他數(shù)字部件將其作出不同的判斷,有的判斷到“1”有的判斷到“0”,有的也進(jìn)入了亞穩(wěn)態(tài),數(shù)字部件就會(huì)邏輯混亂。在復(fù)位電路中產(chǎn)生亞穩(wěn)態(tài)可能會(huì)導(dǎo)致復(fù)位失敗。怎么降低亞穩(wěn)態(tài)發(fā)生的概率成了FPGA設(shè)計(jì)需要重視的一個(gè)注意事項(xiàng)。

理論分析

01 信號(hào)傳輸中的亞穩(wěn)態(tài)

在同步系統(tǒng)中,輸入信號(hào)總是系統(tǒng)時(shí)鐘同步,能夠達(dá)到寄存器的時(shí)序要求,所以亞穩(wěn)態(tài)不會(huì)發(fā)生。亞穩(wěn)態(tài)問題通常發(fā)生在一些跨時(shí)鐘域信號(hào)傳輸以及異步信號(hào)采集上。

它們發(fā)生的原因如下:

在跨時(shí)鐘域信號(hào)傳輸時(shí),由于源寄存器時(shí)鐘和目的寄存器時(shí)鐘相移未知,所以源寄存器數(shù)據(jù)發(fā)出數(shù)據(jù),數(shù)據(jù)可能在任何時(shí)間到達(dá)異步時(shí)鐘域的目的寄存器,所以無法保證滿足目的寄存器 Tsu 和 Th 的要求;

在異步信號(hào)采集中,由于異步信號(hào)可以在任意時(shí)間點(diǎn)到達(dá)目的寄存器,所以也無法保證滿足目的寄存器 Tsu 和 Th 的要求;

當(dāng)數(shù)據(jù)在目的寄存器 Tsu-Th 時(shí)間窗口發(fā)生變化,也即當(dāng)數(shù)據(jù)的建立時(shí)間或者保持時(shí)間不滿足時(shí),就可能發(fā)生亞穩(wěn)態(tài)現(xiàn)象。如圖 3.1 所示。

圖 3.1 亞穩(wěn)態(tài)產(chǎn)生示意圖

由圖可知,當(dāng)產(chǎn)生亞穩(wěn)態(tài)后 Tco 時(shí)間后會(huì)有 Tmet(決斷時(shí)間)的振蕩時(shí)間段,當(dāng)振蕩結(jié)束回到穩(wěn)定狀態(tài)時(shí)為“0”或者“1”,這個(gè)是隨機(jī)的。因此,會(huì)對(duì)后續(xù)電路判斷造成影響。

02 復(fù)位電路的亞穩(wěn)態(tài)

(1)異步復(fù)位電路

在復(fù)位電路設(shè)計(jì)中,復(fù)位信號(hào)基本都是異步的,常用異步復(fù)位電路 Verilog 描述如下:

always @(posedge clk or negedge rst_n)
begin
if(!rst_n) a <= 1’b0;
else a <= b;
end

綜合出來復(fù)位電路模型如圖 3.2 所示:

圖 3.2 異步復(fù)位電路模型

如圖 3.3 所示,為復(fù)位電路復(fù)位時(shí)序圖。如果異步復(fù)位信號(hào)的撤銷時(shí)間在 Trecovery(恢復(fù)時(shí)間)和 Tremoval(移除時(shí)間)之內(nèi),那勢(shì)必造成亞穩(wěn)態(tài)的產(chǎn)生,輸出在時(shí)鐘邊沿的 Tco 后會(huì)產(chǎn)生振蕩,振蕩時(shí)間為 Tmet(決斷時(shí)間),最終穩(wěn)定到“0”或者“1”,就會(huì)可能造成復(fù)位失敗。

圖 3.3 異步復(fù)位時(shí)序

(2)同步復(fù)位電路

在復(fù)位電路中,由于復(fù)位信號(hào)是異步的,因此,有些設(shè)計(jì)采用同步復(fù)位電路進(jìn)行復(fù)位,并且絕大多數(shù)資料對(duì)于同步復(fù)位電路都認(rèn)為不會(huì)發(fā)生亞穩(wěn)態(tài),其實(shí)不然,同步電路也會(huì)發(fā)生亞穩(wěn)態(tài),只是幾率小于異步復(fù)位電路。

如下面 verilog 代碼對(duì)同步復(fù)位電路的描述:

always @(posedge clk)
begin
if(!rst_n) a <= 1’b0;
else a <= b;
end


綜合出硬件電路如圖 3.4 所示。

圖 3.4 同步復(fù)位電路

在此,我們不討論同步復(fù)位的消耗資源問題,只討論同步復(fù)位的亞穩(wěn)態(tài)產(chǎn)生情況。

當(dāng)輸入端 Din 為高電平,而且復(fù)位信號(hào)的撤銷時(shí)間在 clk 的 Tsu 和 Th 內(nèi)時(shí)候,亞穩(wěn)態(tài)就隨之產(chǎn)生了。如圖 3.5 時(shí)序所示,當(dāng)復(fù)位撤銷時(shí)間在 clk 的 Tsu 和 Th 內(nèi),輸入數(shù)據(jù)為“1”,通過和輸入數(shù)據(jù)相與后的數(shù)據(jù)也在 clk 的 Tsu 和 Th 內(nèi),因此,勢(shì)必會(huì)造成類似異步信號(hào)采集的亞穩(wěn)態(tài)情況。

圖 3.5 同步復(fù)位電路時(shí)序圖

03 亞穩(wěn)態(tài)產(chǎn)生概率以及串?dāng)_概率

在實(shí)際的FPGA電路設(shè)計(jì)中,常常人們想的是怎么減少亞穩(wěn)態(tài)對(duì)系統(tǒng)的影響,很少有人考慮怎么才能減少亞穩(wěn)態(tài)發(fā)生幾率,以及亞穩(wěn)態(tài)串?dāng)_的概率問題。

(1)亞穩(wěn)態(tài)發(fā)生概率

由上面分析得知,系統(tǒng)亞穩(wěn)態(tài)發(fā)生的都是由于 clk 的 Tsu 和 Th 不滿足,又或者是復(fù)位信號(hào)的移除和恢復(fù)時(shí)間不滿足。常用 FPGA 器件的 Tsu+Th 約等于 1ns,復(fù)位移除和恢復(fù)時(shí)間相加約等于 1ns。

當(dāng)異步信號(hào)不是一組數(shù)據(jù),或者信號(hào)量較少,那就需要對(duì)異步信號(hào)進(jìn)行同步處理,例如對(duì)一個(gè)異步脈沖信號(hào)進(jìn)行采集,只要脈沖信號(hào)變化發(fā)生在時(shí)鐘 Tsu 和 Th 窗口內(nèi),那就很可能會(huì)產(chǎn)生亞穩(wěn)態(tài),亞穩(wěn)態(tài)產(chǎn)生的概率大概為:

概率=(建立時(shí)間+保持時(shí)間)/ 采集時(shí)鐘周期

(公式 3-1)

由公式 3-1 可以看出,隨著 clk 頻率的增加,亞穩(wěn)態(tài)發(fā)生的幾率是增加的。

例如,為系統(tǒng)采用 100M 時(shí)鐘對(duì)一個(gè)外部信號(hào)進(jìn)行采集,采集時(shí)鐘周期為 10ns,那采集產(chǎn)生亞穩(wěn)態(tài)的概率為:1ns/10ns=10%

同理采用 300M 時(shí)鐘對(duì)一個(gè)外部信號(hào)進(jìn)行采集,那產(chǎn)生亞穩(wěn)態(tài)的概率為:1ns/3.3ns=30%

如果采用三相相位差為 120°的時(shí)鐘對(duì)一個(gè)外部信號(hào)進(jìn)行采集,那產(chǎn)生亞穩(wěn)態(tài)的概率接近 90%

所以在異步信號(hào)采集過程中,要想減少亞穩(wěn)態(tài)發(fā)生的概率:

降低系統(tǒng)工作時(shí)鐘,增大系統(tǒng)周期,亞穩(wěn)態(tài)概率就會(huì)減小;

采用工藝更好的 FPGA,也就是 Tsu 和 Th 時(shí)間較小的 FPGA 器件、

(2)亞穩(wěn)態(tài)的串?dāng)_概率

使用異步信號(hào)進(jìn)行使用的時(shí)候,好的設(shè)計(jì)都會(huì)對(duì)異步信號(hào)進(jìn)行同步處理,同步一般采用多級(jí) D 觸發(fā)器級(jí)聯(lián)處理,如圖 3.6 所示,采用三級(jí) D 觸發(fā)器對(duì)異步信號(hào)進(jìn)行同步處理。

圖 3.6 三級(jí)寄存器同步

這種模型大部分資料都說的是第一級(jí)寄存器產(chǎn)生亞穩(wěn)態(tài)后,第二級(jí)寄存器穩(wěn)定輸出概率為 90%,第三極寄存器穩(wěn)定輸出的概率為 99%,如果亞穩(wěn)態(tài)跟隨電路一直傳遞下去,那就會(huì)另自我修護(hù)能力較弱的系統(tǒng)直接崩潰。接下來我們分析這種串?dāng)_的概率問題。

如圖 3.7 所示為一個(gè)正常第一級(jí)寄存器發(fā)生了亞穩(wěn)態(tài),第二級(jí)、第三極寄存器消除亞穩(wěn)態(tài)時(shí)序模型。

圖 3.7 三級(jí)寄存器消除亞穩(wěn)態(tài)

由上圖可以看出,當(dāng)?shù)谝粋€(gè)寄存器發(fā)生亞穩(wěn)態(tài)后,經(jīng)過 Tmet 的振蕩穩(wěn)定后,第二級(jí)寄存器能采集到一個(gè)穩(wěn)定的值。但是為什么第二級(jí)寄存器還是可能會(huì)產(chǎn)生亞穩(wěn)態(tài)呢?

由于振蕩時(shí)間 Tmet 是受到很多因素影響的,所以 Tmet 時(shí)間又長有短,所以當(dāng) Tmet 時(shí)間長到大于一個(gè)采集周期后,那第二級(jí)寄存器就會(huì)采集到亞穩(wěn)態(tài)。如圖 3.8 所示。

圖 3.8 二級(jí)寄存器亞穩(wěn)態(tài)

由上圖可知,第二級(jí)也是一個(gè)亞穩(wěn)態(tài),所以在這種情況下,亞穩(wěn)態(tài)產(chǎn)生了串?dāng)_,從第一級(jí)寄存器傳到了第二級(jí)寄存器,同樣也可能從第二級(jí)寄存器串?dāng)_到第三級(jí)寄存器。這樣會(huì)讓設(shè)計(jì)邏輯判斷出錯(cuò),產(chǎn)生亞穩(wěn)態(tài)傳輸,可能導(dǎo)致系統(tǒng)死機(jī)奔潰。

(3)亞穩(wěn)態(tài)振蕩時(shí)間 Tmet

亞穩(wěn)態(tài)震蕩時(shí)間 Tmet 關(guān)系到后級(jí)寄存器的采集穩(wěn)定問題,Tmet 影響因素包括:器件的生產(chǎn)工藝、溫度、環(huán)境以及寄存器采集到亞穩(wěn)態(tài)離穩(wěn)定態(tài)的時(shí)刻等。甚至某些特定條件,如干擾、輻射等都會(huì)造成 Tmet 增長。

消除亞穩(wěn)態(tài)的辦法

有亞穩(wěn)態(tài)產(chǎn)生,我們就要對(duì)亞穩(wěn)態(tài)進(jìn)行消除,常用對(duì)亞穩(wěn)態(tài)消除有三種方式:

對(duì)異步信號(hào)進(jìn)行同步處理;

采用 FIFO 對(duì)跨時(shí)鐘域數(shù)據(jù)通信進(jìn)行緩沖設(shè)計(jì);

對(duì)復(fù)位電路采用異步復(fù)位、同步釋放方式處理。

01 對(duì)異步信號(hào)進(jìn)行同步提取邊沿

在異步通信或者跨時(shí)鐘域通信過程中,最常用的就是對(duì)異步信號(hào)進(jìn)行同步提取邊沿處理。對(duì)一個(gè)異步信號(hào)進(jìn)行提取上升沿通常采用程序清單 4.1 所示。

程序清單 4.1 雙極寄存器提取邊沿


input sig_nsyn;
wire sig_nsyn_p;
reg[1:0] sig_nsyn_r;
always @(posedge clk or negedge rst_n)
begin
if(!rst_n) sig_nsyn_r <= 2’d0;
else sig_nsyn_r <= { sig_nsyn_r [0], sig_nsyn };
end
assign sig_nsyn_p = sig_nsyn_r[0] & ~sig_nsyn_r[1];


這種邊沿提取方式對(duì)于一個(gè)穩(wěn)定的系統(tǒng)是不合適的,例如:當(dāng)?shù)谝患?jí)寄存器采集到亞穩(wěn)態(tài),那勢(shì)必造成 sig_nsyn_p 輸出亞穩(wěn)態(tài),這樣就會(huì)對(duì)采用 sig_nsyn_p 的信號(hào)進(jìn)行判斷的電路造成影響,甚至判斷出錯(cuò)誤的值。

根據(jù) 3.3.1 小節(jié)的亞穩(wěn)態(tài)產(chǎn)生概率,如果在 100M 時(shí)種下那第一級(jí)寄存器產(chǎn)生亞穩(wěn)態(tài)的概率約為 10%,隨著系統(tǒng)采集頻率升高,那產(chǎn)生亞穩(wěn)態(tài)的概率也會(huì)隨之上升。因此,在進(jìn)行異步信號(hào)跨頻提取邊沿時(shí)候,一般采用多進(jìn)行一級(jí)寄存器消除亞穩(wěn)態(tài),可能在系統(tǒng)穩(wěn)定性要求高的情況下,采用更多級(jí)寄存器來消除亞穩(wěn)態(tài),如程序清單 4.2 所示,即為采用 4 級(jí)寄存器消除亞穩(wěn)態(tài),相應(yīng)的邊沿信號(hào)產(chǎn)生的時(shí)間就晚了兩個(gè)時(shí)鐘周期。

程序清單 4.2 多級(jí)寄存器提取邊沿信號(hào)


input sig_nsyn;
wire sig_nsyn_p;
reg[3:0] sig_nsyn_r;
always @(posedge clk or negedge rst_n)
begin
if(!rst_n) sig_nsyn_r <= 2’d0;
else sig_nsyn_r <= { sig_nsyn_r [2::0], sig_nsyn };
end
assign sig_nsyn_p = sig_nsyn_r[2] & ~sig_nsyn_r[3];

02FIFO 進(jìn)行異步跨頻數(shù)據(jù)處理

當(dāng)數(shù)據(jù)流從一個(gè)時(shí)鐘域到另一個(gè)時(shí)鐘域的時(shí)候,絕大多數(shù)情況下都采用 FIFO 來作為中間緩沖,采用雙時(shí)鐘對(duì)數(shù)據(jù)緩沖,就可以避免亞穩(wěn)態(tài)的發(fā)生。

03 異步復(fù)位,同步釋放

對(duì)于復(fù)位情況下的亞穩(wěn)態(tài),常常是由于恢復(fù)時(shí)間和移除時(shí)鐘不滿足造成的,因此,最常用的處理方式是采用異步復(fù)位、同步釋放。常用電路模型如所示。采用第二級(jí)寄存器輸出作為全局復(fù)位信號(hào)輸出。

程序清單 4.3 異步復(fù)位處理


wire sys_rst_n;
reg [1:0] rst_r;
always @(posedge clk or negedge rst_n)
begin
if(!rst_n) rst_r <= 2’d0;
else rst_r <= {rst_r[0], 1’b1};
end
assign sys_rst_n = rst_r[1];

通過上面三種方式處理異步信號(hào)、異步數(shù)據(jù)、以及異步復(fù)位可有效的提高系統(tǒng)的穩(wěn)定性。減少亞穩(wěn)態(tài)的產(chǎn)生。

責(zé)任編輯:xj

原文標(biāo)題:詳解 | FPGA中復(fù)位電路產(chǎn)生亞穩(wěn)態(tài)的原因

文章出處:【微信公眾號(hào):FPGA設(shè)計(jì)論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1625

    文章

    21620

    瀏覽量

    601239
  • 亞穩(wěn)態(tài)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    13234
  • 復(fù)位電路
    +關(guān)注

    關(guān)注

    13

    文章

    320

    瀏覽量

    44503

原文標(biāo)題:詳解 | FPGA中復(fù)位電路產(chǎn)生亞穩(wěn)態(tài)的原因

文章出處:【微信號(hào):gh_9d70b445f494,微信公眾號(hào):FPGA設(shè)計(jì)論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    復(fù)位電路介紹 復(fù)位電路的原理及作用

    電路概述 復(fù)位電路是一種用于控制電子系統(tǒng)啟動(dòng)或恢復(fù)到初始狀態(tài)的電路。當(dāng)系統(tǒng)通電或者按下復(fù)位按鈕時(shí)
    的頭像 發(fā)表于 10-18 16:44 ?574次閱讀

    FPGA Verilog HDL有什么奇技巧?

    設(shè)計(jì)的正確性。 然而,在實(shí)際綜合的電路(特別是對(duì)于 ASIC),一般不存在“初值”的概念,只有“復(fù)位值”。對(duì)于 ASIC 而言,在聲明 reg 時(shí)賦初值是沒有意義的,因?yàn)閿?shù)字電路并沒
    發(fā)表于 09-12 19:10

    STM32復(fù)位電路復(fù)位芯片和阻容復(fù)位電路區(qū)別

    系統(tǒng),復(fù)位電路是保證系統(tǒng)正常工作的重要部分。當(dāng)系統(tǒng)出現(xiàn)異?;蛐枰匦聠?dòng)時(shí),復(fù)位電路能夠迅速將系統(tǒng)恢復(fù)到初始狀態(tài)。STM32微控制器的
    的頭像 發(fā)表于 08-06 10:26 ?957次閱讀

    FPGA同步復(fù)位和異步復(fù)位

    FPGA(Field-Programmable Gate Array,現(xiàn)場(chǎng)可編程門陣列)復(fù)位操作是設(shè)計(jì)過程不可或缺的一環(huán),它負(fù)責(zé)將電路
    的頭像 發(fā)表于 07-17 11:12 ?1229次閱讀

    數(shù)字電路亞穩(wěn)態(tài)是什么

    在數(shù)字電路的設(shè)計(jì)與實(shí)現(xiàn)亞穩(wěn)態(tài)是一個(gè)不可忽視的現(xiàn)象。它可能由多種因素引發(fā),對(duì)電路的穩(wěn)定性和可靠性產(chǎn)生嚴(yán)重影響。本文將深入探討數(shù)字
    的頭像 發(fā)表于 05-21 15:29 ?1035次閱讀

    電容在復(fù)位電路的作用(復(fù)位電路具體要怎么設(shè)計(jì))

    數(shù)字電路寄存器和 RAM 在上電之后默認(rèn)的狀態(tài)和數(shù)據(jù)是不確定的,如果有復(fù)位,我們可以把寄存器復(fù)位到初始狀態(tài),RAM 的數(shù)據(jù)可以通過復(fù)位來觸
    發(fā)表于 03-13 12:16 ?1233次閱讀
    電容在<b class='flag-5'>復(fù)位</b><b class='flag-5'>電路</b><b class='flag-5'>中</b>的作用(<b class='flag-5'>復(fù)位</b><b class='flag-5'>電路</b>具體要怎么設(shè)計(jì))

    什么是單穩(wěn)態(tài)觸發(fā)電路穩(wěn)態(tài)觸發(fā)電路有哪些特點(diǎn)?有哪些應(yīng)用

    穩(wěn)態(tài)觸發(fā)電路(Monostable Multivibrator Circuit)也被稱為單穩(wěn)態(tài)多諧振電路或單搖擺電路,是一種
    的頭像 發(fā)表于 02-06 11:13 ?2134次閱讀

    穩(wěn)態(tài)電路和雙穩(wěn)態(tài)電路的區(qū)別 單穩(wěn)態(tài)電路的主要功能

    穩(wěn)態(tài)電路和雙穩(wěn)態(tài)電路是電子電路中常見的兩種類型電路,它們?cè)诠δ芎吞匦陨洗嬖谝恍╋@著差異。下面我
    的頭像 發(fā)表于 02-06 11:04 ?2633次閱讀

    兩級(jí)觸發(fā)器同步,就能消除亞穩(wěn)態(tài)嗎?

    兩級(jí)觸發(fā)器同步,就能消除亞穩(wěn)態(tài)嗎? 兩級(jí)觸發(fā)器同步可以幫助消除亞穩(wěn)態(tài)。本文將詳細(xì)解釋兩級(jí)觸發(fā)器同步原理、亞穩(wěn)態(tài)的定義和產(chǎn)生原因、以及兩級(jí)觸發(fā)器同步如何消除
    的頭像 發(fā)表于 01-16 16:29 ?1053次閱讀

    復(fù)位信號(hào)存在亞穩(wěn)態(tài),有危險(xiǎn)嗎?

    復(fù)位信號(hào)存在亞穩(wěn)態(tài),有危險(xiǎn)嗎? 復(fù)位信號(hào)在電子設(shè)備起著重要的作用,它用于使設(shè)備回到初始狀態(tài),以確保設(shè)備的正常運(yùn)行。然而,我們有時(shí)會(huì)發(fā)現(xiàn)復(fù)位
    的頭像 發(fā)表于 01-16 16:25 ?447次閱讀

    rc復(fù)位電路的電阻作用

    RC復(fù)位電路是一種常見的數(shù)字電路設(shè)計(jì)技術(shù),主要用于將數(shù)字電路的輸出狀態(tài)恢復(fù)到初始狀態(tài)。在RC復(fù)位電路
    的頭像 發(fā)表于 12-14 15:10 ?1718次閱讀

    SaberRD的穩(wěn)態(tài)分析驗(yàn)證概述

    仿真可以大大減少通過測(cè)量進(jìn)行穩(wěn)態(tài)分析的工作量,但由于大多數(shù)電路模擬器缺乏在實(shí)際電路上進(jìn)行交流分析的能力,實(shí)驗(yàn)室方法仍然流行。
    的頭像 發(fā)表于 12-06 14:07 ?714次閱讀
    SaberRD的<b class='flag-5'>穩(wěn)態(tài)</b><b class='flag-5'>分析</b>驗(yàn)證<b class='flag-5'>概述</b>

    復(fù)位保護(hù)電路如何進(jìn)行復(fù)位保護(hù)?

    復(fù)位保護(hù)電路,是在系統(tǒng)進(jìn)行復(fù)位的過程對(duì)接口進(jìn)行硬性邏輯保護(hù),避免毛刺和錯(cuò)誤對(duì)周圍系統(tǒng)產(chǎn)生影響的模塊。
    的頭像 發(fā)表于 12-04 13:48 ?766次閱讀
    <b class='flag-5'>復(fù)位</b>保護(hù)<b class='flag-5'>電路</b>如何進(jìn)行<b class='flag-5'>復(fù)位</b>保護(hù)?

    數(shù)字電路亞穩(wěn)態(tài)產(chǎn)生原因

    亞穩(wěn)態(tài)是指觸發(fā)器的輸入信號(hào)無法在規(guī)定時(shí)間內(nèi)達(dá)到一個(gè)確定的狀態(tài),導(dǎo)致輸出振蕩,最終會(huì)在某個(gè)不確定的時(shí)間產(chǎn)生不確定的輸出,可能是0,也可能是1,導(dǎo)致輸出結(jié)果不可靠。
    的頭像 發(fā)表于 11-22 18:26 ?1804次閱讀
    數(shù)字<b class='flag-5'>電路</b><b class='flag-5'>中</b>的<b class='flag-5'>亞穩(wěn)態(tài)</b><b class='flag-5'>產(chǎn)生</b>原因

    RC復(fù)位電路原理分析

    藍(lán)色的是3.3V上電信號(hào)(除個(gè)別芯片使用其他電壓外,整板使用3.3V供電),粉紅色的復(fù)位信號(hào)(此處的復(fù)位信號(hào)是低電平有效的RC接反相器之后的輸出),橫軸每格為2ms,縱軸每格為1V。復(fù)位信號(hào)的
    的頭像 發(fā)表于 11-22 15:03 ?6339次閱讀
    RC<b class='flag-5'>復(fù)位</b><b class='flag-5'>電路</b>原理<b class='flag-5'>分析</b>