0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

開(kāi)關(guān)噪聲,以及在開(kāi)關(guān)電源設(shè)計(jì)無(wú)法充分濾波時(shí),PCB電路會(huì)受哪些影響

Sq0B_Excelpoint ? 來(lái)源:亞德諾半導(dǎo)體 ? 作者:亞德諾半導(dǎo)體 ? 2020-11-03 18:02 ? 次閱讀

緊迫的時(shí)間表有時(shí)會(huì)讓工程師忽略除了 VIN、 VOUT和負(fù)載要求等以外的其他關(guān)鍵細(xì)節(jié),將PCB應(yīng)用的電源設(shè)計(jì)放在事后再添加。遺憾的是,后續(xù)生產(chǎn)PCB時(shí),之前忽略的這些細(xì)節(jié)會(huì)成為難以診斷的問(wèn)題。例如,在經(jīng)過(guò)漫長(zhǎng)的調(diào)試過(guò)程后,設(shè)計(jì)人員發(fā)現(xiàn)電路會(huì)隨機(jī)出現(xiàn)故障,比如,因?yàn)殚_(kāi)關(guān)噪聲,導(dǎo)致隨機(jī)故障的來(lái)源則很難追查。

選擇繁多 對(duì)于特定的電源設(shè)計(jì),可能有多種可行的解決方案。在下面的示例中,我們將介紹多種選擇,例如單芯片電源與多電壓軌集成電路(IC)。我們將評(píng)估成本和性能取舍。探討低壓差(LDO)穩(wěn)壓器與開(kāi)關(guān)穩(wěn)壓器(一般稱(chēng)為降壓或升壓穩(wěn)壓器)之間的權(quán)衡考量。還將介紹混合方法(即LDO穩(wěn)壓器和降壓穩(wěn)壓器的混合與匹配),包括電壓輸入至輸出控制(VIOC)穩(wěn)壓器解決方案。 在本文中,我們將分析開(kāi)關(guān)噪聲,以及在開(kāi)關(guān)電源設(shè)計(jì)無(wú)法充分濾波時(shí),PCB電路會(huì)受哪些影響。從總體設(shè)計(jì)角度來(lái)看,還需考慮成本、性能、實(shí)施和效率等因素。 例如,如何根據(jù)給定的一個(gè)或多個(gè)電源實(shí)現(xiàn)多電源拓?fù)鋬?yōu)化設(shè)計(jì)?我們將藉此深入探討設(shè)計(jì)、IC接口技術(shù)、電壓閾值電平,以及哪類(lèi)穩(wěn)壓器噪聲會(huì)影響電路。我們將分析一些基本邏輯電平,例如5 V、3.3 V、2.5 V和1.8 V晶體管-晶體管邏輯(TTL)、互補(bǔ)金屬氧化物半導(dǎo)體(CMOS),及其各自的閾值要求。 本文還會(huì)提及正發(fā)射極耦合邏輯(PECL)、低壓PECL(LVPECL)和電流模式邏輯(CML)等先進(jìn)邏輯,但不會(huì)詳細(xì)介紹。這些都是超高速接口,對(duì)于它們來(lái)說(shuō),低噪聲電平非常重要。設(shè)計(jì)人員需要知道如何避免信號(hào)擺幅引起的這些問(wèn)題。 在電源設(shè)計(jì)中,成本和性能要求并存,所以設(shè)計(jì)人員必須仔細(xì)考慮邏輯電平和對(duì)干凈電源的要求。在公差和噪聲方面,通過(guò)設(shè)計(jì)實(shí)現(xiàn)可靠性并提供適當(dāng)裕量,也可以避免生產(chǎn)問(wèn)題。 設(shè)計(jì)人員需要了解與電源設(shè)計(jì)相關(guān)的權(quán)衡考量:哪些可實(shí)現(xiàn)?哪些可接受?如果設(shè)計(jì)達(dá)不到要求的性能,那么設(shè)計(jì)人員必須重新審視選項(xiàng)和成本,以滿(mǎn)足規(guī)格要求。例如,多軌器件(例如 ADP5054)可以在保持成本高效的同時(shí)提供所需的性能優(yōu)勢(shì)。

典型設(shè)計(jì)示例

我們先來(lái)舉個(gè)設(shè)計(jì)示例。圖1顯示將12 V和3.3 V輸入電源作為主電源的電路板框圖。主電源必須降壓,以便針對(duì)PCB應(yīng)用產(chǎn)生5 V、2.5 V、1.8 V,甚至3.3 V電壓。如果外部3.3 V電源能夠提供足夠的電源和低噪聲,那么可以直接使用3.3 V輸入電軌,無(wú)需額外調(diào)節(jié),以免產(chǎn)生額外成本。如果不能,則可以使用12 V輸入電軌,通過(guò)降壓至PCB應(yīng)用所需的3.3 V來(lái)滿(mǎn)足電源要求。

圖1.需要多軌電源解決方案的應(yīng)用電路板概覽。

邏輯接口概述

PCB一般使用多個(gè)電源。IC可能僅使用5 V電源;或者,它可能要求多個(gè)電源,輸入/輸入接口使用5 V和3.3 V,內(nèi)部邏輯使用2.5 V,低功耗休眠方式使用1.8 V。低功耗模式可能始終開(kāi)啟,用于定時(shí)器功能、管理等邏輯,或用于中斷時(shí)啟用喚醒模式,或者用于IRQ引腳,以啟用IC功能并為其供電,也就是5 V、3.3 V和2.5 V電源。所有這些或其中部分邏輯接口通常都在IC內(nèi)部。

圖2顯示了標(biāo)準(zhǔn)邏輯接口電平,包括各種TTL和CMOS閾值邏輯電平,以及它們可接受的輸入和輸出電壓邏輯定義。在本文中,我們將討論何時(shí)將輸入邏輯驅(qū)動(dòng)至低電平(用輸入電壓低 (VIL)表示),何時(shí)驅(qū)動(dòng)至高電平(用輸入邏輯電平高 VIH表示)。我們將重點(diǎn)分析VIL,即圖2中標(biāo)記為“Avoid”的閾值不確定區(qū)域。

在所有情況下,必須考慮±10%的電源公差。圖3顯示了高速差分信號(hào)。本文將著重探討圖2所示的標(biāo)準(zhǔn)邏輯電平。

圖2.標(biāo)準(zhǔn)邏輯接口電平。

開(kāi)關(guān)噪聲

未經(jīng)過(guò)充分濾波時(shí),開(kāi)關(guān)穩(wěn)壓器降壓或升壓電源設(shè)計(jì)可能產(chǎn)生幾十毫伏至幾百毫伏的開(kāi)關(guān)噪聲,尖峰可能達(dá)到400 mV至600 mV。所以,了解開(kāi)關(guān)噪聲是否會(huì)給使用的邏輯電平和接口造成問(wèn)題非常重要。

安全裕度 為確保提供合適的安全裕度,實(shí)現(xiàn)可靠的PSU,一條設(shè)計(jì)經(jīng)驗(yàn)法則是采用最糟糕情況下的–10%公差。例如,對(duì)于5 V TTL,0.8 V的VIL變成0.72 V,對(duì)于1.8 V CMOS,0.63 V的VIL變成0.57 V,閾值電壓(VTH)也相應(yīng)降低(5 V TTL VTH= 1.35 V,1.8 V CMOS VTH= 0.81 V)。開(kāi)關(guān)噪聲(VNS)可能為幾十毫伏到幾百毫伏。此外,邏輯電路本身也會(huì)產(chǎn)生信號(hào)噪聲(VN),即干擾噪聲??傇肼曤妷?VTN= VN + VNS)可能在100 mV至800 mV之間。將VTN添加至標(biāo)稱(chēng)信號(hào)中,以生成總信號(hào)電壓(VTSIG):實(shí)際的總信號(hào)(VTSIG= VTSIG+ VTN)會(huì)影響閾值電壓(VTH),進(jìn)一步擴(kuò)大了avoid區(qū)域。VTH區(qū)域內(nèi)的信號(hào)電平是不確定的,在該區(qū)域內(nèi),邏輯電路可以任意隨機(jī)翻轉(zhuǎn);例如,在最糟糕的情形下,會(huì)錯(cuò)誤觸發(fā)邏輯1,而不是邏輯0。

圖3.高速差分邏輯接口電平。

多軌PSU注意事項(xiàng)和提示

通過(guò)了解接口輸入和IC內(nèi)部邏輯的閾值電平,我們現(xiàn)在知道哪些電平會(huì)觸發(fā)正確的邏輯電平,哪些會(huì)(意外)觸發(fā)錯(cuò)誤的邏輯電平。問(wèn)題在于:要滿(mǎn)足這些閾值,電源的噪聲性能需要達(dá)到什么水平?低壓差線(xiàn)性穩(wěn)壓器噪聲很低,但在高壓降比下卻并不一定高效。開(kāi)關(guān)穩(wěn)壓器可以有效降壓,但會(huì)產(chǎn)生一些噪聲。高效低噪的電源系統(tǒng)應(yīng)包含這兩種電源的組合。本文著重介紹各種組合,包括在開(kāi)關(guān)穩(wěn)壓器后接LDO穩(wěn)壓器的混合方法。

(在需要時(shí))最大化效率和最小化噪聲的方法 從圖1所示的設(shè)計(jì)示例可以看出,為了充分提高5 V穩(wěn)壓的效率并盡可能降低開(kāi)關(guān)噪聲,需要分接12 V電路并使用降壓穩(wěn)壓器,例如 ADP2386。從標(biāo)準(zhǔn)邏輯接口電平來(lái)看,5 V TTL VIL和 5 V CMOS VIL分別是0.8 V和1.5 V,僅使用開(kāi)關(guān)穩(wěn)壓器時(shí),也具備適當(dāng)?shù)脑6?。?duì)于這些電軌,通過(guò)使用降壓拓?fù)淇蓪?shí)現(xiàn)效率最大化,而開(kāi)關(guān)噪聲則低于采用5 V(TTL和CMOS)技術(shù)時(shí)的 VIL。通過(guò)使用降壓穩(wěn)壓器(例如圖4a所示的ADP2386配置),效率可以高達(dá)95%,如ADP2386的典型電路和效率曲線(xiàn)圖所示(見(jiàn)圖4b)。如果在此設(shè)計(jì)中使用噪聲較低的LDO穩(wěn)壓器,從VIN到VOUT的7 V壓降會(huì)導(dǎo)致消耗大量?jī)?nèi)部功率,一般表現(xiàn)為產(chǎn)生熱量和損失效率。為了以少量額外成本實(shí)現(xiàn)可靠設(shè)計(jì),在降壓穩(wěn)壓器后接LDO穩(wěn)壓器來(lái)產(chǎn)生5 V電壓也是一項(xiàng)額外優(yōu)勢(shì)。

圖4.ADP2386的(a)典型電路和(b)效率曲線(xiàn)圖。

圖5.典型的ADP125應(yīng)用。

2.5 V和1.8 V CMOS的 VIL分別是0.7 V和0.63 V。遺憾的是,此邏輯電平的安全裕度尚不足以避免開(kāi)關(guān)噪聲。要解決此問(wèn)題,有兩種方案可選。第一種:如果圖1所示的外部3.3 V電源具備足夠功率且噪聲極低,則分接這個(gè)外部3.3 V電源,并使用線(xiàn)性穩(wěn)壓器(LDO穩(wěn)壓器),例如 ADP125 (圖5)或 ADP1740來(lái)獲得2.5 V和1.8 V電源。注意,從3.3 V到1.8 V有1.5 V壓降。如果此壓降會(huì)導(dǎo)致問(wèn)題,則可以使用混合方法。第二種:如果外部3.3 V電源的噪聲不低,或不能提供足夠功率,則分接12 V電源,通過(guò)降壓穩(wěn)壓器后接LDO穩(wěn)壓器來(lái)產(chǎn)生3.3 V、2.5 V和1.8 V電源;混合方法如圖6所示。 加入LDO穩(wěn)壓器會(huì)稍微增加成本和板面積以及少量散熱,但要實(shí)現(xiàn)安全裕度,有必要作出這些取舍。使用LDO穩(wěn)壓器會(huì)小幅降低效率,但可以通過(guò)保持 VIN至 VOUT的少量壓降,使這種效率降幅達(dá)到最低:3.3 V至2.5 V,保持0.8 V,或3.3 V至1.8 V,保持1.5 V。可以使用帶VIOC功能的穩(wěn)壓器盡可能提高效率和瞬變性能。VIOC可以調(diào)節(jié)上游開(kāi)關(guān)穩(wěn)壓器的輸出,從而在LDO穩(wěn)壓器兩端保持合理的壓降。帶VIOC功能的穩(wěn)壓器包括 LT3045、 LT3042 和 LT3070-1。 LT3070-1是一款5 A、低噪聲、可編程輸出、85 mV低壓差線(xiàn)性穩(wěn)壓器。如果必須使用LDO穩(wěn)壓器,則存在散熱問(wèn)題,其中功耗= VDROP× I。例如,LT3070-1支持3 A,穩(wěn)壓器兩端的功率降幅(或功耗)典型值為3 A × 85 mV = 255 mW。相比壓差為400 mV,輸出電流同樣為3 A,功耗為1.2 W的一些典型LDO穩(wěn)壓器,LT3070-1的功耗僅為其五分之一。 或者,我們可以使用混合方法,以犧牲成本為代價(jià)來(lái)提高效率。圖6中效率和性能均得到優(yōu)化,其中先使用降壓穩(wěn)壓器(ADP2386)將電壓降至允許的最低電壓,盡量提高效率,后接一個(gè)LDO穩(wěn)壓器(ADP1740)。

圖6.使用ADP2386和ADP1740組合的混合拓?fù)洹?/p>

此練習(xí)提供一個(gè)通用設(shè)計(jì)示例,用于顯示一些拓?fù)浜图夹g(shù)。但是,也不能忘記考慮其他因素,例如IMAX、成本、封裝、壓降等。 也提供低噪聲降壓和升壓穩(wěn)壓器選項(xiàng),例如SilentSwitcherregulators,它具備極低的噪聲和低EMI。例如,從性能、封裝、尺寸和布局區(qū)域來(lái)看, LT8650S 和 LTC3310S 具有成本高效特性。

封裝、功率、成本、效率和性能取舍 量產(chǎn)PCB設(shè)計(jì)通常要求使用緊湊的多軌電源,以實(shí)現(xiàn)高功率、高效率、出色的性能和低噪聲。例如,ADP5054四通道降壓穩(wěn)壓器為FPGA等應(yīng)用提供高功率(17 A)單芯片多軌電源解決方案,如圖7所示。整個(gè)電源解決方案約41 mm × 20 mm大小。ADP5054本身的大小僅為7 mm × 7 mm,可以提供17 A總電流。要在緊湊空間內(nèi)實(shí)現(xiàn)極高的功率電平,可以考慮使用ADI的μModuleregulators,例如 LTM4700,可以在15 mm × 22 mm的封裝大小內(nèi)提供高達(dá)100 A電流。

圖7.適合FPGA應(yīng)用的ADP5054單芯片多軌電源解決方案。

圖8.ADP5054原理圖。

ADP5054

通道 1 和通道 2

具有低端 FET 驅(qū)動(dòng)器的可編程 2 A/4 A/6 A 同步降壓穩(wěn)壓器

通道 3 和通道 4:2.5 A 同步降壓穩(wěn)壓器

單一 12 A 輸出(通道 1 和通道 2 并聯(lián))

單一 5 A 輸出(通道 3 和通道 4 并聯(lián))

在 10 Hz 至 100 kHz 頻率下,0.8 VREF時(shí)為 40 μV rms

寬輸入電壓范圍:4.5 V 至 15.5 V

±整個(gè)溫度范圍下的輸出精度為 1.5%

250 kHz 至 2 MHz 可調(diào)開(kāi)關(guān)頻率,并具有單獨(dú)的 ?× 頻率選項(xiàng)

功率調(diào)整

靈活的并行操作

低 1/f 噪聲密度

0.811 V 精確閾值的精密啟用

有源輸出放電開(kāi)關(guān)

FPWM/PSM 模式選擇

頻率同步輸入或輸出

通道 1 輸出具有電源正常標(biāo)記

UVLO、OCP 和 TSD 保護(hù)

48 引腳 7 mm × 7 mm LFCSP

工作結(jié)溫范圍為 ?40°C 至 +125°C

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 開(kāi)關(guān)電源
    +關(guān)注

    關(guān)注

    6423

    文章

    8197

    瀏覽量

    477771
  • PCB電路
    +關(guān)注

    關(guān)注

    1

    文章

    37

    瀏覽量

    11064

原文標(biāo)題:【世說(shuō)設(shè)計(jì)】設(shè)計(jì)多軌電源時(shí),你可能會(huì)忽略這些問(wèn)題哦~

文章出處:【微信號(hào):Excelpoint_CN,微信公眾號(hào):Excelpoint_CN】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    llc開(kāi)關(guān)電源和普通開(kāi)關(guān)電源的區(qū)別

    、一個(gè)電容C和一個(gè)變壓器T組成。電感L和電容C以及變壓器是串聯(lián)連接的,通過(guò)半橋開(kāi)關(guān)頻率的變化來(lái)調(diào)整輸出電壓。 工作原理 :LLC開(kāi)關(guān)電源利用諧振原理進(jìn)行工作,通過(guò)調(diào)整開(kāi)關(guān)頻率來(lái)改變諧振
    的頭像 發(fā)表于 08-08 09:51 ?520次閱讀

    開(kāi)關(guān)電源紋波噪聲產(chǎn)生原因,開(kāi)關(guān)電源紋波噪聲怎么解決

    開(kāi)關(guān)電源中的開(kāi)關(guān)器件(如MOSFET、IGBT等)開(kāi)關(guān)過(guò)程中會(huì)產(chǎn)生瞬態(tài)的電壓和電流變化,這些變化會(huì)在電源的輸出端產(chǎn)生紋波
    的頭像 發(fā)表于 06-09 16:34 ?712次閱讀

    開(kāi)關(guān)電源的紋波噪聲如何抑制

    開(kāi)關(guān)電源因其高效率、小體積、輕重量等優(yōu)點(diǎn),現(xiàn)代電子設(shè)備中得到了廣泛應(yīng)用。然而,開(kāi)關(guān)電源工作過(guò)程中會(huì)產(chǎn)生紋波噪聲,這些
    的頭像 發(fā)表于 05-30 17:01 ?485次閱讀

    開(kāi)關(guān)電源噪聲是如何產(chǎn)生的?

    產(chǎn)生的電流及電壓,可通過(guò)兩個(gè)公式求得。 此振鈴會(huì)作為高頻開(kāi)關(guān)噪聲帶來(lái)各種影響。雖然有采取相應(yīng)的措施,但由于無(wú)法電源IC處去除安裝電路板的寄
    發(fā)表于 04-02 10:28

    開(kāi)關(guān)電源內(nèi)部的接地 開(kāi)關(guān)電源PCB設(shè)計(jì)解析

    所有開(kāi)關(guān)電源設(shè)計(jì)的最后一步就是印制電路板(PCB)的線(xiàn)路設(shè)計(jì)。
    的頭像 發(fā)表于 02-25 10:40 ?1.3w次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b>內(nèi)部的接地 <b class='flag-5'>開(kāi)關(guān)電源</b><b class='flag-5'>PCB</b>設(shè)計(jì)解析

    開(kāi)關(guān)電源的輸入濾波器是什么

    開(kāi)關(guān)電源轉(zhuǎn)換電能的過(guò)程中,會(huì)生成電磁干擾(EMI),這些干擾以差模噪聲和共模噪聲的形式出現(xiàn)。為了抑制這些噪聲對(duì)電網(wǎng)和負(fù)載設(shè)備的影響,通常會(huì)
    的頭像 發(fā)表于 02-05 10:02 ?1070次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b>的輸入<b class='flag-5'>濾波</b>器是什么

    開(kāi)關(guān)電源噪聲如何消除

    開(kāi)關(guān)電源因其高效率和小型化設(shè)計(jì)而在現(xiàn)代電子設(shè)備中廣泛應(yīng)用。然而,隨之而來(lái)的噪聲問(wèn)題卻可能影響電源性能,并對(duì)其他電路造成干擾。以下是針對(duì)開(kāi)關(guān)電源
    的頭像 發(fā)表于 02-05 09:51 ?1529次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b><b class='flag-5'>噪聲</b>如何消除

    開(kāi)關(guān)電源產(chǎn)生的噪聲有哪些

    開(kāi)關(guān)電源(Switched-mode power supply,簡(jiǎn)稱(chēng)SMPS)是一種高效能的電源轉(zhuǎn)換器,廣泛應(yīng)用于電子設(shè)備中。然而,開(kāi)關(guān)電源工作過(guò)程中會(huì)產(chǎn)生
    的頭像 發(fā)表于 02-05 09:36 ?692次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b>產(chǎn)生的<b class='flag-5'>噪聲</b>有哪些

    濾波開(kāi)關(guān)電源中的應(yīng)用

    濾波開(kāi)關(guān)電源中的應(yīng)用 開(kāi)關(guān)電源是一種將輸入電壓轉(zhuǎn)換為所需輸出電壓的電源,它通過(guò)快速開(kāi)關(guān)和控制
    的頭像 發(fā)表于 01-11 15:59 ?861次閱讀

    開(kāi)關(guān)電源濾波器設(shè)計(jì)與應(yīng)用

    隨著科技的不斷發(fā)展,電子設(shè)備越來(lái)越廣泛地應(yīng)用于各個(gè)領(lǐng)域。在這些設(shè)備中,開(kāi)關(guān)電源作為一種高效、緊湊的電源解決方案,得到了廣泛的應(yīng)用。然而,開(kāi)關(guān)電源工作過(guò)程中會(huì)產(chǎn)生大量的電磁干擾(EMI
    的頭像 發(fā)表于 12-30 14:42 ?1073次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b><b class='flag-5'>濾波</b>器設(shè)計(jì)與應(yīng)用

    降低開(kāi)關(guān)電源噪聲

    降低開(kāi)關(guān)電源噪聲
    的頭像 發(fā)表于 11-24 15:39 ?411次閱讀

    開(kāi)關(guān)電源原理與設(shè)計(jì)(二):聯(lián)式開(kāi)關(guān)電源輸出電壓濾波電路

    電子發(fā)燒友網(wǎng)站提供《開(kāi)關(guān)電源原理與設(shè)計(jì)(二):聯(lián)式開(kāi)關(guān)電源輸出電壓濾波電路.pdf》資料免費(fèi)下載
    發(fā)表于 11-13 15:02 ?8次下載
    <b class='flag-5'>開(kāi)關(guān)電源</b>原理與設(shè)計(jì)(二):聯(lián)式<b class='flag-5'>開(kāi)關(guān)電源</b>輸出電壓<b class='flag-5'>濾波</b><b class='flag-5'>電路</b>

    開(kāi)關(guān)電源原理與設(shè)計(jì)(三):串聯(lián)式開(kāi)關(guān)電源儲(chǔ)能濾波電感的計(jì)算

    電子發(fā)燒友網(wǎng)站提供《開(kāi)關(guān)電源原理與設(shè)計(jì)(三):串聯(lián)式開(kāi)關(guān)電源儲(chǔ)能濾波電感的計(jì)算.pdf》資料免費(fèi)下載
    發(fā)表于 11-13 14:52 ?2次下載
    <b class='flag-5'>開(kāi)關(guān)電源</b>原理與設(shè)計(jì)(三):串聯(lián)式<b class='flag-5'>開(kāi)關(guān)電源</b>儲(chǔ)能<b class='flag-5'>濾波</b>電感的計(jì)算

    開(kāi)關(guān)電源的五種紋波噪聲如何抑制?

    紋波噪聲。這種噪聲會(huì)對(duì)電路穩(wěn)定性、噪聲抑制、射頻干擾等方面產(chǎn)生很大影響,因此必須加以抑制。本文將介紹開(kāi)關(guān)電源的五種紋波
    的頭像 發(fā)表于 11-06 10:13 ?992次閱讀

    開(kāi)關(guān)電源電路圖及原理詳解

    開(kāi)關(guān)電源是一種交直流電轉(zhuǎn)換的電源裝置,它通過(guò)開(kāi)關(guān)管的開(kāi)關(guān)動(dòng)作,以高頻率將輸入電壓切換為脈沖信號(hào),然后通過(guò)整流濾波
    的頭像 發(fā)表于 10-10 09:56 ?3680次閱讀
    <b class='flag-5'>開(kāi)關(guān)電源</b><b class='flag-5'>電路</b>圖及原理詳解