0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度神經(jīng)網(wǎng)絡(luò)是為人工智能的重要基石

姚小熊27 ? 來源: 科技行者 ? 作者: 科技行者 ? 2020-11-25 09:50 ? 次閱讀

深度神經(jīng)網(wǎng)絡(luò)是一種使用數(shù)學(xué)模型處理圖像以及其他數(shù)據(jù)的多層系統(tǒng),而且目前已經(jīng)發(fā)展為人工智能的重要基石。

深度神經(jīng)網(wǎng)絡(luò)得出的結(jié)果看似復(fù)雜,但同樣有可能受到誤導(dǎo)。而這樣的誤導(dǎo)輕則致使其將一種動(dòng)物錯(cuò)誤識(shí)別為另一種動(dòng)物,重則在自動(dòng)駕駛汽車上將停車標(biāo)志誤解為正常前進(jìn)。

休斯敦大學(xué)的一位哲學(xué)家在發(fā)表于《自然機(jī)器智能》上的一篇論文中提到,關(guān)于這些假想問題背后的普遍假設(shè),在于誤導(dǎo)性信息可能給這類網(wǎng)絡(luò)的可靠性造成嚴(yán)重影響。

隨著機(jī)器學(xué)習(xí)以及其他形式的人工智能越來越深入滲透至社會(huì),其用途也開始涵蓋從ATM機(jī)到網(wǎng)絡(luò)安全系統(tǒng)的廣泛領(lǐng)域。哲學(xué)系副教授Cameron Buckner表示,正是這種普及,讓了解明顯錯(cuò)誤的來源變得無比重要。研究人員們將這類信息稱為“對(duì)抗性示例”,指當(dāng)深度神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)過程中遇到訓(xùn)練輸入之外的其他信息時(shí),則很有可能總結(jié)出錯(cuò)誤的結(jié)論、最終引發(fā)圖像或數(shù)據(jù)誤判。之所以被表述為“對(duì)抗性”,是因?yàn)檫@樣的問題往往只能由另一機(jī)器學(xué)習(xí)網(wǎng)絡(luò)所產(chǎn)生或發(fā)現(xiàn)。作為機(jī)器學(xué)習(xí)領(lǐng)域中的一種前沿技術(shù),對(duì)抗雙方將不斷升級(jí)自身能力,以更復(fù)雜的方法嘗試實(shí)現(xiàn)干擾與反干擾。

Buckner提到,“但這種對(duì)抗有時(shí)候可能源自人為誤導(dǎo),因此要想更好地了解神經(jīng)網(wǎng)絡(luò)的可靠性,我們必須對(duì)誤導(dǎo)問題做出深入研究?!?/p>

換言之,這種誤導(dǎo)結(jié)果很可能源自網(wǎng)絡(luò)需要處理的內(nèi)容、與所涉及的實(shí)際模式之間的某種相互作用所引發(fā)。這與傳統(tǒng)意義上的誤導(dǎo),似乎還不完全是同一種概念。

Buckner寫道,“理解對(duì)抗性整合的含義,可能需要探索第三種可能性:其中至少有一部分模式屬于人為創(chuàng)造。因此,目前的難題在于,直接丟棄這些模式可能有損模型學(xué)習(xí),但直接使用則具有潛在風(fēng)險(xiǎn)?!?/p>

引發(fā)機(jī)器學(xué)習(xí)系統(tǒng)錯(cuò)誤的對(duì)抗性事件除了無心而發(fā),更可能是有意為之。Buckner認(rèn)為這才是更嚴(yán)重的風(fēng)險(xiǎn),“意味著惡意攻擊者可能會(huì)欺騙某些本應(yīng)可靠的系統(tǒng),例如安全類應(yīng)用程序?!?/p>

例如,基于人臉識(shí)別技術(shù)的安全系統(tǒng)很可能遭遇黑客入侵,導(dǎo)致違規(guī)行為的出現(xiàn);或者在交通標(biāo)志上張貼某些圖形,導(dǎo)致自動(dòng)駕駛汽車產(chǎn)生意外誤解。

先前的研究發(fā)現(xiàn),與人們的預(yù)期相反,使用場(chǎng)景中天然存在著一些對(duì)抗性示例,即機(jī)器學(xué)習(xí)系統(tǒng)有可能因?yàn)橐馔饨换ィǘ且驍?shù)據(jù)錯(cuò)誤)而產(chǎn)生誤解。這類情況相當(dāng)罕見,必須通過其他人工智能技術(shù)才可能發(fā)現(xiàn)。

但這些問題又真實(shí)存在,要求研究人員重新考慮該如何辨別自然異常與人為誤導(dǎo)。

事實(shí)上,我們對(duì)這類人為誤導(dǎo)的理解并不清晰。但這有點(diǎn)像是相機(jī)鏡頭上時(shí)不時(shí)出現(xiàn)的光暈,類似于依靠光暈來判斷畫面中太陽的位置,研究人員似乎也可以借助這樣的蛛絲馬跡推斷機(jī)器學(xué)習(xí)中的惡意誤導(dǎo)方法。

更重要的是,這種新的思考方式也將影響人們?cè)谏疃壬窠?jīng)網(wǎng)絡(luò)中使用工件的方式,包括不應(yīng)簡(jiǎn)單將誤解結(jié)論視為深度學(xué)習(xí)無效。

他總結(jié)道,“某些對(duì)抗性事件很可能是人為設(shè)計(jì)而來。我們必須知曉其中的手法與工件是什么,這樣才能真正理解深度神經(jīng)網(wǎng)絡(luò)的可靠性。”
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度
    的頭像 發(fā)表于 07-24 10:42 ?528次閱讀

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要
    的頭像 發(fā)表于 07-10 15:20 ?721次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)作為深度學(xué)習(xí)領(lǐng)域的重要分支,自20世紀(jì)80年代以來一直是人工智能
    的頭像 發(fā)表于 07-08 18:20 ?647次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

    前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Network, FNN),作為最基本且應(yīng)用廣泛的一種人工神經(jīng)網(wǎng)絡(luò)模型,其工作原理和結(jié)構(gòu)對(duì)于理解深度學(xué)習(xí)及
    的頭像 發(fā)表于 07-08 11:28 ?1355次閱讀

    深度神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)方法

    深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)作為人工智能領(lǐng)域的重要技術(shù)之一,通過模擬人腦神經(jīng)元之間的連接,實(shí)現(xiàn)了對(duì)復(fù)
    的頭像 發(fā)表于 07-04 13:13 ?370次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)的特點(diǎn)

    。 引言 人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)是人工智能領(lǐng)域的一個(gè)重要分支,它通過模擬人腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能,實(shí)現(xiàn)了對(duì)復(fù)雜數(shù)據(jù)的高效處理和
    的頭像 發(fā)表于 07-04 09:42 ?372次閱讀

    人工智能人工神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

    人工智能(Artificial Intelligence,簡(jiǎn)稱AI)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,簡(jiǎn)稱ANN)是兩個(gè)密切相關(guān)但又有所區(qū)別的概念。 定義和起源
    的頭像 發(fā)表于 07-04 09:39 ?932次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)是什么

    多年的發(fā)展,已經(jīng)成為人工智能領(lǐng)域的重要分支之一。 神經(jīng)網(wǎng)絡(luò)的基本概念 2.1 神經(jīng)神經(jīng)元是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 09:37 ?428次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)芯片的介紹

    人工智能神經(jīng)網(wǎng)絡(luò)芯片是一類專門為深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)算法設(shè)計(jì)的處理器。它們具有高性能、低功耗、可擴(kuò)展等特點(diǎn),廣泛應(yīng)用于圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域。以下是關(guān)于
    的頭像 發(fā)表于 07-04 09:33 ?535次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是什么

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)人工智能的一種重要實(shí)現(xiàn)方式,而人工智能則是
    的頭像 發(fā)表于 07-03 10:25 ?887次閱讀

    深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個(gè)領(lǐng)域取得了顯著的應(yīng)用成果。從圖像識(shí)
    的頭像 發(fā)表于 07-02 18:19 ?747次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?2343次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)

    隨著大數(shù)據(jù)和計(jì)算機(jī)硬件技術(shù)的飛速發(fā)展,深度學(xué)習(xí)已成為人工智能領(lǐng)域的重要分支,而卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)作為
    的頭像 發(fā)表于 07-01 15:58 ?364次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系

    在快速發(fā)展的科技領(lǐng)域,人工智能(Artificial Intelligence, AI)和神經(jīng)網(wǎng)絡(luò)(Neural Networks)是兩個(gè)備受矚目的概念。它們之間的聯(lián)系緊密而復(fù)雜,共同推動(dòng)了智能
    的頭像 發(fā)表于 07-01 14:23 ?636次閱讀

    詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線
    的頭像 發(fā)表于 01-11 10:51 ?1840次閱讀
    詳解<b class='flag-5'>深度</b>學(xué)習(xí)、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用