0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用新的機(jī)器學(xué)習(xí)思考方式 來辨別自然異常與人為誤導(dǎo)

工程師鄧生 ? 來源:科技行者 ? 作者:佚名 ? 2020-11-25 14:39 ? 次閱讀

深度神經(jīng)網(wǎng)絡(luò)是一種使用數(shù)學(xué)模型處理圖像以及其他數(shù)據(jù)的多層系統(tǒng),而且目前已經(jīng)發(fā)展為人工智能的重要基石。

深度神經(jīng)網(wǎng)絡(luò)得出的結(jié)果看似復(fù)雜,但同樣有可能受到誤導(dǎo)。而這樣的誤導(dǎo)輕則致使其將一種動物錯誤識別為另一種動物,重則在自動駕駛汽車上將停車標(biāo)志誤解為正常前進(jìn)。

休斯敦大學(xué)的一位哲學(xué)家在發(fā)表于《自然機(jī)器智能》上的一篇論文中提到,關(guān)于這些假想問題背后的普遍假設(shè),在于誤導(dǎo)性信息可能給這類網(wǎng)絡(luò)的可靠性造成嚴(yán)重影響。

隨著機(jī)器學(xué)習(xí)以及其他形式的人工智能越來越深入滲透至社會,其用途也開始涵蓋從ATM機(jī)到網(wǎng)絡(luò)安全系統(tǒng)的廣泛領(lǐng)域。哲學(xué)系副教授Cameron Buckner表示,正是這種普及,讓了解明顯錯誤的來源變得無比重要。研究人員們將這類信息稱為“對抗性示例”,指當(dāng)深度神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)過程中遇到訓(xùn)練輸入之外的其他信息時,則很有可能總結(jié)出錯誤的結(jié)論、最終引發(fā)圖像或數(shù)據(jù)誤判。之所以被表述為“對抗性”,是因?yàn)檫@樣的問題往往只能由另一機(jī)器學(xué)習(xí)網(wǎng)絡(luò)所產(chǎn)生或發(fā)現(xiàn)。作為機(jī)器學(xué)習(xí)領(lǐng)域中的一種前沿技術(shù),對抗雙方將不斷升級自身能力,以更復(fù)雜的方法嘗試實(shí)現(xiàn)干擾與反干擾。

Buckner提到,“但這種對抗有時候可能源自人為誤導(dǎo),因此要想更好地了解神經(jīng)網(wǎng)絡(luò)的可靠性,我們必須對誤導(dǎo)問題做出深入研究?!?/p>

換言之,這種誤導(dǎo)結(jié)果很可能源自網(wǎng)絡(luò)需要處理的內(nèi)容、與所涉及的實(shí)際模式之間的某種相互作用所引發(fā)。這與傳統(tǒng)意義上的誤導(dǎo),似乎還不完全是同一種概念。

Buckner寫道,“理解對抗性整合的含義,可能需要探索第三種可能性:其中至少有一部分模式屬于人為創(chuàng)造。因此,目前的難題在于,直接丟棄這些模式可能有損模型學(xué)習(xí),但直接使用則具有潛在風(fēng)險?!?/p>

引發(fā)機(jī)器學(xué)習(xí)系統(tǒng)錯誤的對抗性事件除了無心而發(fā),更可能是有意為之。Buckner認(rèn)為這才是更嚴(yán)重的風(fēng)險,“意味著惡意攻擊者可能會欺騙某些本應(yīng)可靠的系統(tǒng),例如安全類應(yīng)用程序?!?/p>

例如,基于人臉識別技術(shù)的安全系統(tǒng)很可能遭遇黑客入侵,導(dǎo)致違規(guī)行為的出現(xiàn);或者在交通標(biāo)志上張貼某些圖形,導(dǎo)致自動駕駛汽車產(chǎn)生意外誤解。

先前的研究發(fā)現(xiàn),與人們的預(yù)期相反,使用場景中天然存在著一些對抗性示例,即機(jī)器學(xué)習(xí)系統(tǒng)有可能因?yàn)橐馔饨换ィǘ且驍?shù)據(jù)錯誤)而產(chǎn)生誤解。這類情況相當(dāng)罕見,必須通過其他人工智能技術(shù)才可能發(fā)現(xiàn)。

但這些問題又真實(shí)存在,要求研究人員重新考慮該如何辨別自然異常與人為誤導(dǎo)。

事實(shí)上,我們對這類人為誤導(dǎo)的理解并不清晰。但這有點(diǎn)像是相機(jī)鏡頭上時不時出現(xiàn)的光暈,類似于依靠光暈來判斷畫面中太陽的位置,研究人員似乎也可以借助這樣的蛛絲馬跡推斷機(jī)器學(xué)習(xí)中的惡意誤導(dǎo)方法。

更重要的是,這種新的思考方式也將影響人們在深度神經(jīng)網(wǎng)絡(luò)中使用工件的方式,包括不應(yīng)簡單將誤解結(jié)論視為深度學(xué)習(xí)無效。

他總結(jié)道,“某些對抗性事件很可能是人為設(shè)計而來。我們必須知曉其中的手法與工件是什么,這樣才能真正理解深度神經(jīng)網(wǎng)絡(luò)的可靠性?!?/p>

責(zé)任編輯:PSY

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    eda在機(jī)器學(xué)習(xí)中的應(yīng)用

    機(jī)器學(xué)習(xí)項目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器學(xué)習(xí)中的首要任務(wù)之一。EDA可以幫助識別
    的頭像 發(fā)表于 11-13 10:42 ?65次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能的快速發(fā)展中,自然語言處理(NLP)和機(jī)器學(xué)習(xí)(ML)成為了兩個核心的研究領(lǐng)域。它們都致力于解決復(fù)雜的問題,但側(cè)重點(diǎn)和應(yīng)用場景有所不同。 1. 自然語言處理(NLP) 定義:
    的頭像 發(fā)表于 11-11 10:35 ?248次閱讀

    機(jī)器人技術(shù)的發(fā)展趨勢

    能力。 機(jī)器人能夠通過學(xué)習(xí)和訓(xùn)練,不斷優(yōu)化自身的行為和性能,實(shí)現(xiàn)更高效、更智能的工作。 自然語言處理與理解 : 隨著自然語言處理技術(shù)的進(jìn)步,機(jī)器
    的頭像 發(fā)表于 10-25 09:27 ?384次閱讀

    【「時間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書概覽與時間序列概述

    的應(yīng)用也很廣泛,機(jī)器學(xué)習(xí)為時間分析帶來新的可能性。人們往往可以通過過往的時間序列數(shù)據(jù)預(yù)測未來,在各行各業(yè)中都有很好的應(yīng)用與發(fā)展前景。 時間序列分類: 1.單維時間序列 單維時間序列
    發(fā)表于 08-07 23:03

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識學(xué)習(xí)

    今天學(xué)習(xí)大語言模型在自然語言理解方面的原理以及問答回復(fù)實(shí)現(xiàn)。 主要是基于深度學(xué)習(xí)自然語言處理技術(shù)。 大語言模型涉及以下幾個過程: 數(shù)據(jù)收
    發(fā)表于 08-02 11:03

    三星電容代理商怎么辨別真假呢?

    三星電容代理商 所代理產(chǎn)品辨別真假的方式有兩種,一種是先辨別 三星電容代理商 的真假,另一種就是根據(jù)三星電容的產(chǎn)品防偽標(biāo)志進(jìn)行辨別真假。今
    的頭像 發(fā)表于 07-25 15:37 ?278次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    的內(nèi)容,閱讀雖慢,但在這一學(xué)習(xí)過程中也掌握了許多新知識,為后續(xù)章節(jié)的閱讀打下基礎(chǔ),這是一個快樂的學(xué)習(xí)過程。 基礎(chǔ)篇從人工智能的起源講起,提出了機(jī)器能否思考的疑問,引入了圖靈機(jī)這一神奇的
    發(fā)表于 07-25 14:33

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨(dú)特的方式推動著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于
    的頭像 發(fā)表于 07-01 11:40 ?1125次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機(jī)器學(xué)習(xí)」解鎖未來?

    應(yīng)用,將理論基礎(chǔ)與實(shí)踐案例相結(jié)合,作者憑借扎實(shí)的數(shù)學(xué)功底及其在企業(yè)界的豐富實(shí)踐經(jīng)驗(yàn),將機(jī)器學(xué)習(xí)與時間序列分析巧妙融合在書中。 全書書共分為8章,系統(tǒng)介紹時間序列的基礎(chǔ)知識、常用預(yù)測方法、異常檢測
    發(fā)表于 06-25 15:00

    請問PSoC? Creator IDE可以支持IMAGIMOB機(jī)器學(xué)習(xí)嗎?

    我的項目使用 POSC62 MCU 進(jìn)行開發(fā),由于 UDB 模塊是需求的重要組成部分,所以我選擇了PSoC? Creator IDE 進(jìn)行項目開發(fā)。 但現(xiàn)在,由于需要擴(kuò)展,我不得不使用機(jī)器學(xué)習(xí)模塊
    發(fā)表于 05-20 08:06

    碼垛機(jī)器與人工車間生產(chǎn)哪個具有優(yōu)勢

    ?在探討碼垛機(jī)器與人工車間生產(chǎn)效率哪個有優(yōu)勢時,我們需要從多個維度進(jìn)行分析。 ?首先,從工作效率上看,碼垛機(jī)器人具有顯著的優(yōu)勢。它們可以24小時在線工作,不受疲乏和休息時間的限制,而且操作準(zhǔn)確度高
    的頭像 發(fā)表于 05-10 16:49 ?239次閱讀
    碼垛<b class='flag-5'>機(jī)器</b>人<b class='flag-5'>與人</b>工車間生產(chǎn)哪個具有優(yōu)勢

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實(shí)現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?552次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    光耦3083誤導(dǎo)通原因

    光耦3083是一種常用的光耦合器件,通常用于用于將輸入信號轉(zhuǎn)換為光信號并隔離輸出信號的電氣器件。然而,光耦3083在操作中存在誤導(dǎo)通問題,這可能是由于以下幾個原因造成的: 設(shè)計問題:光耦3083
    的頭像 發(fā)表于 01-15 09:21 ?959次閱讀

    基于transformer和自監(jiān)督學(xué)習(xí)的路面異常檢測方法分享

    鋪設(shè)異常檢測可以幫助減少數(shù)據(jù)存儲、傳輸、標(biāo)記和處理的壓力。本論文描述了一種基于Transformer和自監(jiān)督學(xué)習(xí)的新方法,有助于定位異常區(qū)域。
    的頭像 發(fā)表于 12-06 14:57 ?1392次閱讀
    基于transformer和自監(jiān)督<b class='flag-5'>學(xué)習(xí)</b>的路面<b class='flag-5'>異常</b>檢測方法分享

    【AIOps】一種全新的日志異常檢測評估框架:LightAD,相關(guān)成果已被軟工頂會ICSE 2024錄用

    需要更長的時間進(jìn)行日志預(yù)處理、模型訓(xùn)練和模型推斷,從而阻礙了它們在需要快速部署日志異常檢測服務(wù)的在線分布式云系統(tǒng)中的采用。 本文對現(xiàn)有的基于經(jīng)典機(jī)器學(xué)習(xí)和深度
    的頭像 發(fā)表于 11-29 17:40 ?572次閱讀