0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

利用神經網絡法實現對焦平面非均勻性校正進行改造設計

電子設計 ? 來源:電子設計應用 ? 作者:王玉磷,畢曉麟 ? 2021-01-12 09:59 ? 次閱讀

紅外焦平面探測是一種兼具輻射敏感和信號處理功能的新一代紅外探測技術,但是由于制造過程和工作環(huán)境的影響, 使得焦平面陣列(FPA ) 各個陣列元即使在相同的輻射通量照射下,也會輸出不相同的響應電壓。這種紅外響應引起的遙感圖像的失真被稱作紅外圖像的非均勻性。為了提高觀測頻率、掃描范圍和空間分辨率,航天遙感一般采用推掃式的多元敏感線陣列對地物成像,通過觀察發(fā)現,推掃得到的遙感圖像出現有規(guī)律的條帶失真,條帶寬度與遙感器多元敏感元個數的掃描線寬度一致,而且隨著時間的推移,條帶現象日趨嚴重,與單敏感元掃描圖像中的噪聲相比有明顯差異,這種失真其實是焦平面非均勻性的一種表現形式。條帶失真是影響線陣列紅外遙感圖像質量的主要因素,必須要用諸如定標的方法去除,但是由于探測器單元響應會隨著時間和工作環(huán)境的變化改變,所以僅僅用定標的方法來校正條帶失真有很大的局限性。

利用神經網絡法實現對焦平面非均勻性校正進行改造設計

圖1 BP網絡結構圖

本文對焦平面非均勻性校正的神經網絡法進行改進,介紹了一種基于人工神經網絡的遙感圖像條帶消除的方法。這種方法可以完全不對FPA進行標定(或自動標定),并且可以通過線性和非線性模型校正,是紅外成像系統(tǒng)非均勻性校正的理想方法。

傳統(tǒng)校正方法

線性校正假設探測器單元的響應呈線性:

y = ax + b

式中,x 為某一探測器單元的輸入信號,y 為可測的輸出信號。如果能求出增益因子a 和偏移因子b,就可求得無畸變的輸入信號x 。

傳統(tǒng)的非均勻性校正方法是在紅外焦平面成像系統(tǒng)使用前,用標準的兩個或多個參考溫度源,對每一個陣列單元響應進行定標,以保證每個陣列單元在兩個或多個參考溫度之間有相同的響應,其校正值被存儲起來,在進行數字處理時固定地將其疊加上去。如果每個陣列單元的輸出特性隨時間是完全線性和穩(wěn)定的,那么,在上述定標溫度范圍內,這種校正是有效的,不過隨著陣列數的增加,存儲校正系數所需要的存儲容量就大為增加。再加上系統(tǒng)的不穩(wěn)定性、陣列單元的非線性和1/ f 噪聲等因素的影響,使得經過一段時間后,陣列單元特性會發(fā)生漂移或溫度背景范圍出現變化,必須對紅外焦平面陣列進行再定標。顯然,這類校正方法不但麻煩,而且可能并不符合實際使用情況,從而導致校正效果不佳,因此,必須研究自適應的非均勻性校正方法。

神經網絡法

神經網絡法的主要特征是通過自學習模擬信息內部關系,進而獲得系統(tǒng)特征參數。假設輸入x和輸出y之間有一種復雜的關系f,神經網絡通過不斷調整結構的權重系數和閾值得到逼近的關系f眨?溝脃=f’(x); Rumelhart 和Mcclalland提出的多層前饋網絡的反向傳播算法(BP算法) ,由于解決了感知器不能解決的多層網絡學習算法的問題,可以很好地對復雜函數進行逼近,在工程中得到了廣泛的應用。一般使用的BP網絡是一個三層前向網絡,結構如圖1所示。

假定校正輸出為Y(n),輸入為X(n),則:

Y(n)=WT(n)X(n)+VT(n)

其中W和V是增益矢量和截距矢量,神經網絡法就是不斷依據實際景像調整W和V,來去除條帶失真。根據三層BP網絡結構,在中間層根據一定的法則計算某像素輸出,并以此作為該像素的輸出,反饋給線性校正神經元來調整W和V。調整以誤差信號均方值最小為準則。

對每一次迭代,令期望響應與輸出響應之差為誤差,用e(n)表示,則:

e(n)=f(n)-Y(n)=f(n)-WT(n)X(n)+VT(n)

其中,f(n)表示期望的校正后輸出,則誤差函數為:F(W,V)=(Wx+V-f)2,利用最陡下降法,可以得到計算W和V的迭代公式:

Wn+1=Wn-2ax(y-f)

Vn+1=Vn-2a(y-f)

式中:n為幀數,a為步長。

神經網絡算法的改進

從上面的分析可以得到,神經網絡法對非均勻性的校正的關鍵是如何建立期望的校正輸出模型,在非線陣列的焦平面非均勻性校正中,一般將校正元相鄰元的輸出平均值作為本元的期望輸出帶入網絡進行網絡訓練,發(fā)展出了4領域和8領域等方法。對于線陣列,由于探測單元只有兩個相鄰的探測元,直接應用上面的方法進行網絡訓練,校正效果不是太好。鑒于此,對算法進行如下改進。

圖2 基于改進神經元算法的試驗結果

假設一幅圖像有n條掃描線組成,對于每一條掃描線響應,可以用Yk(i)表示,其中k表示第k條掃描線 ,i表示線陣列的第i個探測元??梢詫⒕€陣列擴展為有三條線陣列的焦平面,在第k次成像時,焦平面成像為[Yk-1(i):Yk(i):Yk+1(i)],這樣就可以假定Yk(i)的期望校正輸出為:

Y’k(i)=1/8(Yk(i-1)+Yk(i+1)+Yk-1(i-1)+Yk-1(i)+Yk-1(i+1)+Yk+1(i-1)+Yk+1(i)+Yk+1(i+1))

算法過程如下:

1.計算鄰域平均值:

Y’k(i)=1/8(Yk(i-1)+Yk(i+1)+Yk-1(i)+Yk+1(i)+Yk-1(i-1)+Yk+1(i+1)+Yk-1(i-1)+Yk+1(i+1))

2. 令y = Wx + V ,其中W為增益校正因子,V為偏移量校正因子。誤差函數:

F(W,V)=(Wx+V-f)2

利用此函數的梯度函數和最陡下降法,可以得到計算和的迭代公式:

Wn+1=Wn-2ax(y-f)

Vn+1=Vn-2a(y-f)

式中 n為幀數,a為步長。

3.利用線性校正算法得到:

Yn+1=Wn+1×Xn+a+Vn+1

實驗結果

應用上面的算法對遙感紅外圖像進行去條帶實驗。結果如圖2所示。其中a、c、e為原圖像,b、d、f為校正后對應圖像,可以看出,校正效果比較明顯。

結語

紅外成像技術正在突飛猛進地發(fā)展,紅外探測器是核心部件,非均勻性問題嚴重影響它的性能。因此,解決條帶問題是線陣列探測器發(fā)展的關鍵,雖然神經網絡法可以進行去條帶處理,但是離實用還有一段距離,尤其神經網絡訓練的速度遠遠達不到實時應用的要求。本文通過對神經元算法進行改進得到了一種高效、高速、高精度的去條帶方法。

責任編輯:gt

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 探測器
    +關注

    關注

    14

    文章

    2610

    瀏覽量

    72857
  • 神經網絡
    +關注

    關注

    42

    文章

    4749

    瀏覽量

    100435
  • 遙感器
    +關注

    關注

    0

    文章

    8

    瀏覽量

    1510
收藏 人收藏

    評論

    相關推薦

    利用LABVIEW 實現bp神經網絡的程序

    誰有利用LABVIEW 實現bp神經網絡的程序?。ㄎ矣玫陌姹臼?.6的 )
    發(fā)表于 11-26 14:54

    labview BP神經網絡實現

    請問:我在用labview做BP神經網絡實現故障診斷,在NI官網找到了機器學習工具包(MLT),但是里面沒有關于這部分VI的幫助文檔,對于”BP神經網絡分類“這個范例有很多不懂的地方,比如
    發(fā)表于 02-22 16:08

    局部神經網絡,打造未來神經網絡基本組件

    ,局部運算將某一處位置的響應作為輸入特征映射中所有位置的特征的加權和來進行計算。我們將局部運算作為一個高效、簡單和通用的模塊,用于獲取深度神經網絡的長時記憶。我們提出的
    發(fā)表于 11-12 14:52

    【PYNQ-Z2試用體驗】神經網絡基礎知識

    語言,使用numpy.dot方法即可計算矩陣乘法。 以上便是一個簡單神經網絡的基本原理,對神經網絡有了基本的認識之后,我們才能進行復雜的神經網絡設計。總結本文講解了
    發(fā)表于 03-03 22:10

    人工神經網絡實現方法有哪些?

    人工神經網絡(Artificial Neural Network,ANN)是一種類似生物神經網絡的信息處理結構,它的提出是為了解決一些非線性,平穩(wěn),復雜的實際問題。那有哪些辦法能實現
    發(fā)表于 08-01 08:06

    如何設計BP神經網絡圖像壓縮算法?

    處理的運算量和數據吞吐量。圖像壓縮是信息傳輸和存儲系統(tǒng)的關鍵技術,然而我們該如何進行FPGA設計,以實現給定的功能已經成為神經網絡應用的關鍵呢?
    發(fā)表于 08-08 06:11

    如何采用神經網絡技術,對鎳鉻-鎳硅熱電偶進行了非線性校正?

    請問如何采用基于虛擬儀器編程語言CVI編成的BP神經網絡訓練儀對K型鎳鉻-鎳硅熱電偶的非線性進行校正?
    發(fā)表于 04-08 06:55

    matlab實現神經網絡 精選資料分享

    神經神經網絡,對于神經網絡實現是如何一直沒有具體實現一下:現看到一個簡單的神經網絡模型用于訓
    發(fā)表于 08-18 07:25

    基于BP神經網絡的PID控制

    最近在學習電機的智能控制,上周學習了基于單神經元的PID控制,這周研究基于BP神經網絡的PID控制。神經網絡具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現具有最佳組合的PID控
    發(fā)表于 09-07 07:43

    平面紅外圖像的均勻校正技術

    摘要: 焦平面紅外圖像傳感器的應用難點之一解決其均勻的問題。在論述了兩點校 正算法原理的基礎上,提出了一種采用單片機和()*+ 實現
    發(fā)表于 01-14 17:49 ?31次下載

    時域高通濾波均勻校正算法研究

    時域高通濾波均勻校正是一種典型的基于場景的紅外焦平面陣列
    發(fā)表于 11-23 13:36 ?5162次閱讀
    時域高通濾波<b class='flag-5'>非</b><b class='flag-5'>均勻</b><b class='flag-5'>性</b><b class='flag-5'>校正</b>算法研究

    使用FPGA實現紅外焦平面器件的均勻校正的詳細資料說明

    平面器件應用的一個關鍵技術,盡管現在已經有很多種基于場景的均勻校正方法,但是兩點校正算法仍然
    發(fā)表于 03-26 15:58 ?29次下載
    使用FPGA<b class='flag-5'>實現</b>紅外焦<b class='flag-5'>平面</b>器件的<b class='flag-5'>非</b><b class='flag-5'>均勻</b><b class='flag-5'>性</b><b class='flag-5'>校正</b>的詳細資料說明

    基于曲面擬合的低頻均勻噪聲校正算法

    紅外成像系統(tǒng)中,低頻均勻噪聲嚴重影響紅外系統(tǒng)的成像效果,傳統(tǒng)基于標定的方法無法對其進行有效的去除。為此,提出一種基于曲面擬合的低頻
    發(fā)表于 04-27 15:14 ?8次下載
    基于曲面擬合的低頻<b class='flag-5'>非</b><b class='flag-5'>均勻</b><b class='flag-5'>性</b>噪聲<b class='flag-5'>校正</b>算法

    神經網絡在ADC誤差校正中的應用

    “使用由 MATLAB 和 Deep Learning Toolbox 設計和訓練的神經網絡來對 ADC 誤差進行校正后,在 ASIC 上實現時,恩智浦設計的
    的頭像 發(fā)表于 03-18 11:21 ?1687次閱讀

    如何利用Matlab進行神經網絡訓練

    ,使得神經網絡的創(chuàng)建、訓練和仿真變得更加便捷。本文將詳細介紹如何利用Matlab進行神經網絡訓練,包括網絡創(chuàng)建、數據預處理、訓練過程、參數調
    的頭像 發(fā)表于 07-08 18:26 ?1586次閱讀