0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

目標檢測模型和Objectness的知識

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2022-02-12 17:00 ? 次閱讀

作者:Nathan Zhao
編譯:ronghuaiyang

導讀

在本文中,我們將討論目標檢測模型和Objectness的基礎(chǔ)知識。

什么是物體檢測模型?

物體檢測模型本質(zhì)上,正如其名稱所示,檢測物體。這意味著給定一個圖像,它可以告訴你物體在哪里,以及這個物體是什么。例如,在上面的圖像中,我們有許多物體,并且使用物體檢測模型,我們已經(jīng)檢測出不同的物體在圖像中的位置。

這類模型有很多應用。舉幾個例子,物體檢測在以下方面很有用:

自動駕駛汽車,可以檢測到乘客、其他車輛、紅綠燈和停車標志。

安保,模型可以探測到公共區(qū)域的槍支或炸彈,并向附近的警察報警。

總的來說,這類模型非常有用,在過去幾年里,機器學習社區(qū)已經(jīng)對它們進行了大量的研究。

物體檢測中區(qū)域建議的介紹

首先,讓我們了解一下物體檢測模型是如何工作的。首先,我們必須給出一個物體的建議位置。我們把這個建議的位置稱為我們感興趣的區(qū)域,通常顯示在一個邊界框(也稱為圖像窗口)中。根據(jù)物體檢測模型的類型,我們可以通過許多不同的方式來實現(xiàn)這一點。

樸素方法:我們將圖像分割成多個部分,并對每個部分進行分類。這種方法效率低下是因為必須對每個生成的窗口應用分類網(wǎng)絡(luò)(CNN),導致計算時間長。

滑動窗口方法:我們預先確定好窗口比例(或“錨”),然后滑過圖像。對于每個窗口,我們處理它并繼續(xù)滑動。與樸素方法類似,這種方法生成的窗口較多,處理時間也比較長。

選擇性搜索:使用顏色相似度,紋理相似度,和一些其他的圖像細節(jié),我們可以用算法將圖像分割成區(qū)域。雖然選擇性搜索算法本身是耗時的,但這使得分類網(wǎng)絡(luò)的應用需求較少。

區(qū)域建議網(wǎng)絡(luò):我們創(chuàng)建一個單獨的網(wǎng)絡(luò)來確定圖像中感興趣的區(qū)域。這使得我們的模型工作得更快,但也使得我們最終模型的準確性依賴于多個網(wǎng)絡(luò)。

上面列出的這些不同選項之間有一些區(qū)別,但一般來說,當我們加快網(wǎng)絡(luò)的處理時間時,我們往往會犧牲模型的準確性。

區(qū)域建議機制的主要問題是,如果建議的區(qū)域不包含物體,那么你的分類網(wǎng)絡(luò)也會去分類這個區(qū)域,并給出一個錯誤的標記。

那么,什么是Objectness?

Objectness本質(zhì)上是物體存在于感興趣區(qū)域內(nèi)的概率的度量。如果我們Objectness很高,這意味著圖像窗口可能包含一個物體。這允許我們快速地刪除不包含任何物體的圖像窗口。

如果一幅圖像具有較高的Objectness,我們期望它具有:

在整個圖像中具有唯一性

物體周圍有嚴格的邊界

與周圍環(huán)境的外觀不同

例如,在上面的圖像中,我們期望紅色框具有較低的Objectness,藍色框具有中等的Objectness,綠色框具有較高的Objectness。這是因為綠色的框“緊密”地圍繞著我們的物體,而藍色的框則很松散,而紅色的框根本不包含任何物體。

我們?nèi)绾味攘縊bjectness?

有大量的參數(shù)影響圖像窗口的objectness。

多尺度顯著性:這本質(zhì)上是對圖像窗口的外觀獨特性的度量。與整個圖像相比,框中唯一性像素的密度越高,該值就越高。

顏色對比度:框內(nèi)像素與建議圖像窗口周圍區(qū)域的顏色對比度越大,該值越大。

邊緣密度:我們定義邊緣為物體的邊界,這個值是圖像窗口邊界附近的邊緣的度量值。一個有趣的算法可以找到這些邊緣:https://cv-tricks.com/opencv-dnn/edge-detection-hed/。

超像素跨越:我們定義超像素是幾乎相同顏色的像素團。如果該值很高,則框內(nèi)的所有超像素只包含在其邊界內(nèi)。

超像素區(qū)域以不同顏色顯示。請注意,框內(nèi)的超像素大部分不會泄漏到圖像窗口之外。因此,這個“超素跨界”值將會很高。

以上參數(shù)值越高,objectness越高。試著將上述參數(shù)與我們前面列出的具有高objectness的圖像的期望聯(lián)系起來。

英文原文:https://medium.com/@zhao.nathan/understanding-objectness-in-object-detection-models-5d8c9d032488
本文轉(zhuǎn)自:AI公園,作者:Nathan Zhao,編譯:ronghuaiyang,
轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。

審核編輯:何安

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 物體檢測
    +關(guān)注

    關(guān)注

    0

    文章

    8

    瀏覽量

    9166
收藏 人收藏

    評論

    相關(guān)推薦

    目標檢測中大物體的重要性

    導讀實驗表明,對大型物體賦予更大的權(quán)重可以提高所有尺寸物體的檢測分數(shù),從而整體提升目標檢測器的性能(在COCOval2017數(shù)據(jù)集上使用InternImage-T模型,小物體
    的頭像 發(fā)表于 10-09 08:05 ?393次閱讀
    在<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中大物體的重要性

    想要了解下大模型知識

    工作需要,想要了解一下大模型算力建設(shè)知識
    發(fā)表于 08-20 15:31

    圖像分割與目標檢測的區(qū)別是什么

    圖像分割與目標檢測是計算機視覺領(lǐng)域的兩個重要任務(wù),它們在許多應用場景中都發(fā)揮著關(guān)鍵作用。然而,盡管它們在某些方面有相似之處,但它們的目標、方法和應用場景有很大的不同。本文將介紹圖像分割與目標
    的頭像 發(fā)表于 07-17 09:53 ?1024次閱讀

    目標檢測與識別技術(shù)有哪些

    目標檢測與識別技術(shù)是計算機視覺領(lǐng)域的重要研究方向,廣泛應用于安全監(jiān)控、自動駕駛、醫(yī)療診斷、工業(yè)自動化等領(lǐng)域。 目標檢測與識別技術(shù)的基本概念 目標
    的頭像 發(fā)表于 07-17 09:40 ?508次閱讀

    目標檢測與識別技術(shù)的關(guān)系是什么

    目標檢測與識別技術(shù)是計算機視覺領(lǐng)域的兩個重要研究方向,它們之間存在著密切的聯(lián)系和相互依賴的關(guān)系。 一、目標檢測與識別技術(shù)的概念 目標
    的頭像 發(fā)表于 07-17 09:38 ?459次閱讀

    目標檢測識別主要應用于哪些方面

    目標檢測識別是計算機視覺領(lǐng)域的一個重要研究方向,它主要關(guān)注于從圖像或視頻中識別和定位目標物體。隨著計算機視覺技術(shù)的不斷發(fā)展,目標檢測識別已經(jīng)
    的頭像 發(fā)表于 07-17 09:34 ?871次閱讀

    慧視小目標識別算法 解決目標檢測中的老大難問題

    隨著深度學習和人工智能技術(shù)的興起與技術(shù)成熟,一大批如FasterR-CNN、RetinaNet、YOLO等可以在工業(yè)界使用的目標檢測算法已逐步成熟并進入實際應用,大多數(shù)場景下的目標檢測
    的頭像 發(fā)表于 07-17 08:29 ?366次閱讀
    慧視小<b class='flag-5'>目標</b>識別算法   解決<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中的老大難問題

    知識圖譜與大模型之間的關(guān)系

    在人工智能的廣闊領(lǐng)域中,知識圖譜與大模型是兩個至關(guān)重要的概念,它們各自擁有獨特的優(yōu)勢和應用場景,同時又相互補充,共同推動著人工智能技術(shù)的發(fā)展。本文將從定義、特點、應用及相互關(guān)系等方面深入探討知識圖譜與大
    的頭像 發(fā)表于 07-10 11:39 ?847次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領(lǐng)域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得
    的頭像 發(fā)表于 07-04 17:25 ?703次閱讀

    人臉檢測模型有哪些

    人臉檢測是計算機視覺領(lǐng)域的一個重要研究方向,它涉及到從圖像或視頻中檢測出人臉的位置和大小。隨著深度學習技術(shù)的發(fā)展,人臉檢測模型的性能得到了顯著提升。以下是一些常見的人臉
    的頭像 發(fā)表于 07-03 17:05 ?870次閱讀

    用OpenVINO C# API在intel平臺部署YOLOv10目標檢測模型

    模型設(shè)計策略,從效率和精度兩個角度對YOLOs的各個組成部分進行了全面優(yōu)化,大大降低了計算開銷,增強了性能。在本文中,我們將結(jié)合OpenVINO C# API使用最新發(fā)布的OpenVINO 2024.1部署YOLOv10目標檢測
    的頭像 發(fā)表于 06-21 09:23 ?910次閱讀
    用OpenVINO C# API在intel平臺部署YOLOv10<b class='flag-5'>目標</b><b class='flag-5'>檢測</b><b class='flag-5'>模型</b>

    阿里達摩院提出“知識鏈”框架,降低大模型幻覺

    近日,阿里巴巴達摩院(湖畔實驗室)攜手新加坡南洋理工大學等研究機構(gòu),共同推出了大模型知識鏈(CoK)框架。該框架不僅可實時檢索異構(gòu)知識源,還能逐步糾正推理錯誤,有效提高了大模型在回答
    的頭像 發(fā)表于 05-10 11:46 ?642次閱讀

    深入了解目標檢測深度學習算法的技術(shù)細節(jié)

    本文將討論目標檢測的基本方法(窮盡搜索、R-CNN、FastR-CNN和FasterR-CNN),并嘗試理解每個模型的技術(shù)細節(jié)。為了讓經(jīng)驗水平各不相同的讀者都能夠理解,文章不會使用任何公式來進行講解
    的頭像 發(fā)表于 04-30 08:27 ?299次閱讀
    深入了解<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>深度學習算法的技術(shù)細節(jié)

    OpenVINO? C# API部署YOLOv9目標檢測和實例分割模型

    YOLOv9模型是YOLO系列實時目標檢測算法中的最新版本,代表著該系列在準確性、速度和效率方面的又一次重大飛躍。
    的頭像 發(fā)表于 04-03 17:35 ?701次閱讀
    OpenVINO? C# API部署YOLOv9<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>和實例分割<b class='flag-5'>模型</b>

    【飛騰派4G版免費試用】 第二章:在PC端使用 TensorFlow2 訓練目標檢測模型

    本章記錄了如何使用TensorFlow2 進行目標檢測模型訓練的過程。
    的頭像 發(fā)表于 12-15 06:40 ?2416次閱讀
    【飛騰派4G版免費試用】 第二章:在PC端使用 TensorFlow2 訓練<b class='flag-5'>目標</b><b class='flag-5'>檢測</b><b class='flag-5'>模型</b>