工業(yè)產(chǎn)品的表面缺陷對(duì)產(chǎn)品的美觀度、舒適度和使用性能等帶來(lái)不良影響,所以生產(chǎn)企業(yè)對(duì)產(chǎn)品的表面缺陷進(jìn)行檢測(cè)以便及時(shí)發(fā)現(xiàn)并加以控制。
機(jī)器視覺(jué)的檢測(cè)方法可以很大程度上克服人工檢測(cè)方法的抽檢率低、準(zhǔn)確性不高、實(shí)時(shí)性差、效率低、勞動(dòng)強(qiáng)度大等弊端,在現(xiàn)代工業(yè)中得到越來(lái)越廣泛的研究和應(yīng)用。
機(jī)器視覺(jué)技術(shù)是一種無(wú)接觸、無(wú)損傷的自動(dòng)檢測(cè)技術(shù),是實(shí)現(xiàn)設(shè)備自動(dòng)化、智能化和精密控制的有效手段,具有安全可靠、光譜響應(yīng)范圍寬、可在惡劣環(huán)境下長(zhǎng)時(shí)間工作和生產(chǎn)效率高等突出優(yōu)點(diǎn)。
機(jī)器視覺(jué)檢測(cè)系統(tǒng)通過(guò)適當(dāng)?shù)墓庠春?a href="http://ttokpm.com/tags/圖像傳感器/" target="_blank">圖像傳感器(CCD攝像機(jī))獲取產(chǎn)品的表面圖像,利用相應(yīng)的圖像處理算法提取圖像的特征信息,然后根據(jù)特征信息進(jìn)行表面缺陷的定位、識(shí)別、分級(jí)等判別和統(tǒng)計(jì)、存儲(chǔ)、查詢等操作; 機(jī)器視覺(jué)表面缺陷檢測(cè)系統(tǒng)基本組成,主要包括圖像獲取模塊、圖像處理模塊、圖像分析模塊、數(shù)據(jù)管理及人機(jī)接口模塊。 圖像獲取模塊由工業(yè)相機(jī)、光學(xué)鏡頭、光源及其夾持裝置等組成,其功能是完成產(chǎn)品表面圖像的采集。在光源的照明下,通過(guò)光學(xué)鏡頭將產(chǎn)品表面成像于相機(jī)傳感器上,光信號(hào)先轉(zhuǎn)換成電信號(hào),進(jìn)而轉(zhuǎn)換成計(jì)算機(jī)能處理的數(shù)字信號(hào)。目前工業(yè)用相機(jī)主要基于CCD或CMOS芯片的相機(jī)。CCD是目前機(jī)器視覺(jué)最為常用的圖像傳感器。
機(jī)器視覺(jué)光源直接影響到圖像的質(zhì)量,其作用是克服環(huán)境光干擾,保證圖像的穩(wěn)定性,獲得對(duì)比度盡可能高的圖像。目前常用的光源有鹵素?zé)?、熒光燈和發(fā)光二級(jí)管(LED)。LED光源以體積小、功耗低、響應(yīng)速度快、發(fā)光單色性好、可靠性高、光均勻穩(wěn)定、易集成等優(yōu)點(diǎn)獲得了廣泛的應(yīng)用。
由光源構(gòu)成的照明系統(tǒng)按其照射方法可分為明場(chǎng)照明與暗場(chǎng)照明、結(jié)構(gòu)光照明與頻閃光照明。明場(chǎng)與暗場(chǎng)主要描述相機(jī)與光源的位置關(guān)系,明場(chǎng)照明指相機(jī)直接接收光源在目標(biāo)上的反射光,一般相機(jī)與光源異側(cè)分布,這種方式便于安裝;暗場(chǎng)照明指相機(jī)間接接收光源在目標(biāo)上的散射光,一般相機(jī)與光源同側(cè)分布,它的優(yōu)點(diǎn)是能獲得高對(duì)比度的圖像。結(jié)構(gòu)光照明是將光柵或線光源等投射到被測(cè)物上,根據(jù)它們產(chǎn)生的畸變,解調(diào)出被測(cè)物的3維信息。頻閃光照明是將高頻率的光脈沖照射到物體上,攝像機(jī)拍攝要求與光源同步。
圖像處理模塊主要涉及圖像去噪、圖像增強(qiáng)與復(fù)原、缺陷的檢測(cè)和目標(biāo)分割。由于現(xiàn)場(chǎng)環(huán)境、CCD圖像光電轉(zhuǎn)換、傳輸電路及電子元件都會(huì)使圖像產(chǎn)生噪聲,這些噪聲降低了圖像的質(zhì)量從而對(duì)圖像的處理和分析帶來(lái)不良影響,所以要對(duì)圖像進(jìn)行預(yù)處理以去噪。 圖像增強(qiáng)目的是針對(duì)給定圖像的應(yīng)用場(chǎng)合,有目的地強(qiáng)調(diào)圖像的整體或局部特性,將原來(lái)不清晰的圖像變得清晰或強(qiáng)調(diào)某些感興趣的特征,擴(kuò)大圖像中不同物體特征之間的差別,抑制不感興趣的特征,使之改善圖像質(zhì)量、豐富信息量,加強(qiáng)圖像判讀和識(shí)別效果的圖像處理方法。
圖像復(fù)原是通過(guò)計(jì)算機(jī)處理,對(duì)質(zhì)量下降的圖像加以重建或復(fù)原的處理過(guò)程。圖像復(fù)原很多時(shí)候采用與圖像增強(qiáng)同樣的方法,但圖像增強(qiáng)的結(jié)果還需要下一階段來(lái)驗(yàn)證;而圖像復(fù)原試圖利用退化過(guò)程的先驗(yàn)知識(shí),來(lái)恢復(fù)已被退化圖像的本來(lái)面目,如加性噪聲的消除、運(yùn)動(dòng)模糊的復(fù)原等。圖像分割的目的是把圖像中目標(biāo)區(qū)域分割出來(lái),以便進(jìn)行下一步的處理。
表面缺陷檢測(cè)應(yīng)用的領(lǐng)域十分廣泛,主要包括鋼鐵冶金,有色金屬加工,高精銅板帶,鋁板帶,鋁箔,不銹鋼制造,電子素材,無(wú)紡布,織物,玻璃,紙張,薄膜等領(lǐng)域。
責(zé)任編輯:lq6
-
機(jī)器視覺(jué)
+關(guān)注
關(guān)注
161文章
4320瀏覽量
119994
原文標(biāo)題:【拓斯達(dá) | 干貨】機(jī)器視覺(jué)表面缺陷檢測(cè)方法解析
文章出處:【微信號(hào):gaogongrobot,微信公眾號(hào):高工機(jī)器人】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論