0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何提高PA的設(shè)計驗證效率

是德科技KEYSIGHT ? 來源:是德科技KEYSIGHT ? 作者:是德科技KEYSIGHT ? 2021-11-05 15:24 ? 次閱讀

功率放大器(PA),在移動設(shè)備中的重要性不言而喻,尤其是隨著通信技術(shù)的發(fā)展,5G,WiFi 6/6E,UWB等寬帶制式對功放提出了更高的要求,更復(fù)雜的調(diào)制方式,更高的調(diào)制階數(shù),更多的載波聚合,更高的頻段與帶寬,使得測試驗證的復(fù)雜度也隨之提高。

? 如何提高PA的設(shè)計驗證效率?

? 如何真實地反映PA本身的EVM指標?

? 為什么經(jīng)常遇到不同的測試儀表平臺的EVM測試結(jié)果有很大差別?

相信這些都是大家在平時的工作中常遇到的困擾,基于此,我們總結(jié)了經(jīng)常會遇到的5個典型問題,以及解決問題的小貼士,小伙伴們,來看看這些易踩的“坑”,你都成功避過了嗎?

# 問題1 #

設(shè)計仿真階段模型不準

寬帶高頻PA的設(shè)計,是一項復(fù)雜的工作,需要借助專業(yè)的仿真工具完成。對設(shè)計師而言,PA仿真面臨兩大難題:

一是如何獲得與實測一致準確的仿真結(jié)果;

二是在PA設(shè)計完成后,模型如何用于后續(xù)的系統(tǒng)驗證或DPD算法驗證。

小貼士

要解決這兩個難題,最重要是獲得準確的仿真模型,包括大信號,非線性,寬帶模型;也包括無源器件,電路走線,接頭的準確模型。

針對非線性模型,可以使用矢量網(wǎng)絡(luò)分析儀提取器件的X參數(shù)對非線性模型。針對無源器件,走線,接頭等模型提取,通過設(shè)計夾具,去嵌入,對元件模型進行測試提取。使用實測模型進行仿真,多次迭代,最終仿真與測試一致。

文末的資料“Broadband Power Amplifier Design and Validation”中,詳細介紹了如何借助ADS進行寬帶功放設(shè)計與驗證,如下圖:

針對系統(tǒng)驗證或DPD算法驗證,還需要考慮寬帶器件的記憶效應(yīng),可以使用ADS仿真軟件,生成FCE模型,用于后續(xù)的系統(tǒng)驗證或DPD算法驗證。也可以通過儀表,搭建半實物測試系統(tǒng),如下圖,將設(shè)計完成的PA實物通過儀表與系統(tǒng)軟件連接,直接完成系統(tǒng)性能驗證或DPD算法驗證。

# 問題2 #

測試時EVM失真嚴重

現(xiàn)代通訊對射頻系統(tǒng)的帶寬和工作頻段都提出了苛刻的要求,尤其對于毫米波和超寬帶功放而言,測試平臺所引入的失真和誤差會嚴重影響最終的測試結(jié)果。

如下圖是我們做過的一個原型機試驗,采用基于5G候選波形FBMC調(diào)制,通過寬帶矢量源生成的一個載波頻率為20GHz,調(diào)制帶寬達4GHz的原始信號,其物理層調(diào)制的數(shù)據(jù)傳輸速率達到了10-20Gbps。

從頻譜曲線可以看出整個頻率范圍內(nèi)不同頻率成分的幅度波動很大,遠離中心頻率的頻率分離衰減增大,呈現(xiàn)明顯的幅度不平坦,因為信號是由很多個子載波構(gòu)成,這些幅度衰減的頻率成分將使其所在的子載波的信噪比降低,導(dǎo)致EVM下降。

雖然原型機平臺可以依靠接收機信道均衡和糾錯等措施仍然可以實現(xiàn)較高的吞吐率,但是如果用于PA或基站的射頻測試,就會嚴重影響測試EVM的準確度。

小貼士

對測試平臺進行寬帶校正補償

方法1,儀器預(yù)置校正數(shù)據(jù)。出廠前對儀表自身的寬帶失真進行測量并且將校正數(shù)據(jù)存儲在儀表里面,在測試時儀表根據(jù)頻率和帶寬自動應(yīng)用校正數(shù)據(jù),無需額外的校正操作即可進行測試。(注:該方法必須儀器支持內(nèi)置校準功能)

方法2,系統(tǒng)外部校正。使用校準器在現(xiàn)場對儀表進行寬度校正,實時產(chǎn)生校正數(shù)據(jù)補償?shù)絻x表中,使儀表的EVM達到最優(yōu)。對信號源和分析儀以及外部器件進行獨立的校正,校正數(shù)據(jù)即可以應(yīng)用到儀表測試端口,也可以包含測試中使用的外部附件或射頻器件模塊一起校正,校正數(shù)據(jù)可以應(yīng)用到被測件的輸入或輸出端口,而且現(xiàn)場的各種環(huán)境和工作條件產(chǎn)生的影響也會被包括在校正操作中,所以目前應(yīng)用這種方式總是能在現(xiàn)場實現(xiàn)儀表最佳的EVM特性。

是德科技的測試平臺,

提供了結(jié)合上述兩種方案的最優(yōu)解。

? 信號生成部分,M9384B VXG 微波信號發(fā)生器內(nèi)置校準功能,輸出信號校準到端口,通過用戶自定義的自動通道相應(yīng)校正和S參數(shù)去嵌入,將信號校準面延伸到PA輸入端面;

? 信號分析部分,采用U9361 RCal接收機校準儀去除線纜轉(zhuǎn)接頭等外部附件帶來的頻率響應(yīng),將信號校準面延伸至PA輸出端面,如下圖,是目前推薦使用的方法。

關(guān)于Rcal的詳細用法,可參考文末資料“Rcal使用指南”。

# 問題3 #

測量EVM一致性差

測試附件,諸如轉(zhuǎn)接頭和線纜的選擇,是PA及寬帶收發(fā)測試中很容易被忽略的環(huán)節(jié),而在實際的測試中,測試附件會對結(jié)果產(chǎn)生很大的影響,尤其是毫米波頻段使用的線纜和接頭,相對于6GHz以下的低頻段,一般存在更大的線性失真和不平坦性。

小貼士

方法1,選用高質(zhì)量的轉(zhuǎn)接頭和電纜,以保證測試一致性。

方法2,在選用高質(zhì)量測試附件的同時,采用現(xiàn)場外部校正的方式,把測試附件的誤差包含在校正數(shù)據(jù)里面,去除這些部分的影響,具體方法參考前文。

# 問題4 #

加入驅(qū)動放大后EVM惡化嚴重

在測試大功率PA時經(jīng)常遇到的一個問題就是驅(qū)動放大,由于大功率PA往往需要較高的Pin,而毫米波矢量信號源的最佳線性輸出電平通常低于要求,所以往往需要在被測PA輸入端加一個驅(qū)動放大器,下圖是一個實際測試連接框圖:

除了用于5G寬帶信號產(chǎn)生和分析的信號源和分析儀外,驅(qū)動放大器自身也給測試帶來很大影響。雖然一般采用的驅(qū)動放大器都是寬帶線性放大器,只要設(shè)置合適的輸入和輸出功率區(qū)間,放大器工作在線性區(qū),非線性失真很小,其仍然存在線性失真,驅(qū)動放大器本身的幅頻響應(yīng)和相頻響應(yīng)波動仍然對EVM產(chǎn)生較大的影響。

我們實際測試中發(fā)現(xiàn),在26GHz-29GHz頻率范圍,800MHz調(diào)制帶寬條件下,信號源本身輸出信號的EVM已經(jīng)校正到0.8%,但是經(jīng)過驅(qū)動放大器之后,EVM會惡化到最大3%-4%,這不僅導(dǎo)致最終被測PA輸出信號的EVM很高,而且甚至超過了廠家對系統(tǒng)級EVM的要求。

小貼士

采用前文中提到的外部校準方法,如下圖,使信號源加驅(qū)動放大器的整體EVM達到1%左右,這樣再連接被測PA進行EVM測試,就獲得了比較理想的結(jié)果,因為這時驅(qū)動放大器的線性失真不會對測試產(chǎn)生影響。

# 問題5 #

在片測試時多次下針導(dǎo)致低效及損耗

高集成度的PAFEM在片測量中,需要對諸多參數(shù)進行測量,諸如S 參數(shù)、噪聲系數(shù)、互調(diào)失真、壓縮,脈沖射頻測量等,而不同的參數(shù)通常需要用不同的系統(tǒng)進行測量。

多套系統(tǒng)完成測試需要多次下針,也會在PAD上留下痕跡 ,對測試效率及精度都會造成不同程度的影響,1次下針與4次下針后PAD示意,可以明顯看到,多次下針后,PAD上留下了明顯的痕跡,對測試板及探針是個極大的損耗,而且每次測量,都需要重新校準,費時費力。

小貼士

采用單次連接,多次測量的方式,即一次性連接被測器件,用一套系統(tǒng)完成原來多個系統(tǒng)才能完成的工作,可以減少連接復(fù)雜性和工作量。目前,是德科技的PNA-X系列高性能網(wǎng)絡(luò)分析儀可以方便的實現(xiàn)只用一組連接對有源或無源器件進行多項測量:S 參數(shù)、噪聲系數(shù)、增益壓縮、THD、IMD 和頻譜分析。

結(jié) 語

PA設(shè)計與驗證涉及到諸多內(nèi)容,研發(fā)端與生產(chǎn)端的測試方法也不盡相同,除了上述提到的幾點,還有很多需要注意的地方:

? 比如在設(shè)計時如果不事先預(yù)留測試點,后期便會出現(xiàn)需要通過“飛線”等手段引出信號進行驗證;

? 比如需調(diào)整電路工作在線性區(qū),否則易出現(xiàn)非線性失真,那就需要考慮通過額外的算法來消除其影響;

? 比如外圍電路不匹配會導(dǎo)致很大的測試誤差;

? 以及采用先進算法包括DPD,CFR以及包絡(luò)跟蹤(ET)等。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 放大器
    +關(guān)注

    關(guān)注

    143

    文章

    13530

    瀏覽量

    212925
  • 仿真
    +關(guān)注

    關(guān)注

    50

    文章

    4023

    瀏覽量

    133340
  • PA
    PA
    +關(guān)注

    關(guān)注

    3

    文章

    245

    瀏覽量

    46789
  • 5G
    5G
    +關(guān)注

    關(guān)注

    1353

    文章

    48328

    瀏覽量

    562975

原文標題:5個小貼士,提升功率放大器(PA)設(shè)計驗證效率

文章出處:【微信號:是德科技KEYSIGHT,微信公眾號:是德科技KEYSIGHT】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    如何提高伺服驅(qū)動器的效率

    在現(xiàn)代工業(yè)自動化領(lǐng)域,伺服驅(qū)動器的效率對于整個系統(tǒng)的能效和性能至關(guān)重要。本文探討了影響伺服驅(qū)動器效率的關(guān)鍵因素,并提出了一系列提高效率的策略,包括優(yōu)化控制算法、改善硬件設(shè)計、采用先進的功率電子技術(shù)
    的頭像 發(fā)表于 11-04 15:20 ?111次閱讀

    MES系統(tǒng)如何提高生產(chǎn)效率

    在當(dāng)今競爭激烈的制造行業(yè)中,提高生產(chǎn)效率是企業(yè)生存和發(fā)展的關(guān)鍵。MES系統(tǒng)作為一種先進的制造管理工具,已經(jīng)成為許多制造企業(yè)提高生產(chǎn)效率的重要手段。 1. 實時監(jiān)控與數(shù)據(jù)收集 MES系統(tǒng)
    的頭像 發(fā)表于 10-27 09:16 ?220次閱讀

    如何提高云計算的性能和效率

    提高云計算的性能和效率是一個多維度的問題,需要從計算性能、存儲性能、網(wǎng)絡(luò)性能等多個方面入手。以下是一些具體的策略和方法: 一、計算性能優(yōu)化 資源分配 : 根據(jù)用戶需求動態(tài)分配資源,以提高服務(wù)器
    的頭像 發(fā)表于 10-24 09:23 ?282次閱讀

    效率PA設(shè)計的雙重挑戰(zhàn)

    效率”在射頻功率放大器(PA)設(shè)計中占據(jù)舉足輕重的地位。高效率PA設(shè)計的兩大核心:PA的“Class”設(shè)計以及功率合成架構(gòu)。然而,在實際的
    的頭像 發(fā)表于 10-18 15:02 ?155次閱讀
    高<b class='flag-5'>效率</b><b class='flag-5'>PA</b>設(shè)計的雙重挑戰(zhàn)

    提高LLC轉(zhuǎn)換器的ZVS和效率

    電子發(fā)燒友網(wǎng)站提供《提高LLC轉(zhuǎn)換器的ZVS和效率.pdf》資料免費下載
    發(fā)表于 10-14 10:03 ?0次下載
    <b class='flag-5'>提高</b>LLC轉(zhuǎn)換器的ZVS和<b class='flag-5'>效率</b>

    SD NAND測試套件:提升存儲芯片驗證效率

    SD NAND轉(zhuǎn)接板和燒錄座是一種專為工程師設(shè)計的輔助工具,它能夠?qū)⒉煌叽绲腟D NAND芯片轉(zhuǎn)換為通用TF接口封裝,從而方便地進行性能測試和驗證。這種配套測試工具不僅提高了工作效率,還大大降低了測試成本。
    的頭像 發(fā)表于 08-13 09:44 ?284次閱讀
    SD NAND測試套件:提升存儲芯片<b class='flag-5'>驗證</b><b class='flag-5'>效率</b>

    東莞mes系統(tǒng):提高生產(chǎn)效率的利器

    東莞作為中國制造業(yè)的重要基地之一,擁有眾多制造企業(yè),其中不乏一些領(lǐng)先的MES系統(tǒng)供應(yīng)商。這些 MES系統(tǒng)供應(yīng)商 致力于為東莞的制造企業(yè)提供智能制造解決方案,幫助企業(yè)提高生產(chǎn)效率、降低生產(chǎn)成本、提升
    的頭像 發(fā)表于 05-21 15:37 ?407次閱讀

    深圳MES系統(tǒng)如何提高生產(chǎn)效率

    深圳MES系統(tǒng)可以通過多種方式提高生產(chǎn)效率,具體如下: 實時監(jiān)控和分析:MES系統(tǒng)可以實時收集并分析生產(chǎn)數(shù)據(jù),幫助企業(yè)及時了解生產(chǎn)狀況,發(fā)現(xiàn)問題并迅速解決,避免問題擴大化。這種實時監(jiān)控和分析功能可以
    的頭像 發(fā)表于 03-25 14:34 ?406次閱讀

    提高效率的DC電源模塊設(shè)計技巧

    BOSHIDA ?提高效率的DC電源模塊設(shè)計技巧 設(shè)計高效率的BOSHIDA ?DC電源模塊可以幫助減少能源浪費和提高系統(tǒng)功耗,以下是一些設(shè)計技巧: 1. 選擇高效率的功率轉(zhuǎn)換器:選擇
    的頭像 發(fā)表于 02-26 14:27 ?485次閱讀
    <b class='flag-5'>提高效率</b>的DC電源模塊設(shè)計技巧

    提高電源整機效率的方法

    電源整機效率是指電源將輸入電能轉(zhuǎn)換為輸出電能的效率,通常用百分比表示。提高電源整機效率可以降低能源消耗,減少環(huán)境污染,提高設(shè)備的運行
    的頭像 發(fā)表于 01-17 15:57 ?650次閱讀

    提高系統(tǒng)效率的幾個誤解解析

    重復(fù)使用才會提高系統(tǒng)效率。所以在通信系統(tǒng)中一般只打開指令CACHE,數(shù)據(jù)CACHE即使打開也只局限在部分存儲空間,如堆棧部分。同時也要求程序設(shè)計 要兼顧CACHE的容量及塊大小,這涉及到關(guān)鍵代碼循環(huán)體
    發(fā)表于 01-15 07:29

    SiC FET神應(yīng)用,在各種領(lǐng)域提高功率轉(zhuǎn)換效率

    SiC FET神應(yīng)用,在各種領(lǐng)域提高功率轉(zhuǎn)換效率
    的頭像 發(fā)表于 11-30 09:46 ?391次閱讀
    SiC FET神應(yīng)用,在各種領(lǐng)域<b class='flag-5'>提高</b>功率轉(zhuǎn)換<b class='flag-5'>效率</b>

    如何提高電源適配器的效率?

    如何提高電源適配器的效率提高電源適配器的效率對于節(jié)能和環(huán)境保護至關(guān)重要。在本文中,我們將討論一些可以提高電源適配器
    的頭像 發(fā)表于 11-23 16:04 ?958次閱讀

    如何提高電源適配器的效率因數(shù)?

    如何提高電源適配器的效率因數(shù)? 提高電源適配器的效率因數(shù)是提高能源利用效率的一種重要措施。通過
    的頭像 發(fā)表于 11-23 14:51 ?759次閱讀

    提高開關(guān)電源待機效率的方法

    電子發(fā)燒友網(wǎng)站提供《提高開關(guān)電源待機效率的方法.doc》資料免費下載
    發(fā)表于 11-15 10:42 ?0次下載
    <b class='flag-5'>提高</b>開關(guān)電源待機<b class='flag-5'>效率</b>的方法