0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

運算放大器測量CDM新方法

analog_devices ? 來源:亞德諾半導(dǎo)體 ? 作者:亞德諾半導(dǎo)體 ? 2021-11-16 10:45 ? 次閱讀

輸入電容可能會成為高阻抗和高頻運算放大器(op amp)應(yīng)用的一個主要規(guī)格。值得注意的是,當(dāng)光電二極管的結(jié)電容較小時,運算放大器的輸入電容會成為噪聲和帶寬問題的主導(dǎo)因素。

運算放大器的輸入電容和反饋電阻在放大器的響應(yīng)中產(chǎn)生一個極點,從而影響穩(wěn)定性并增加較高頻率下的噪聲增益。因此,穩(wěn)定性和相位裕量可能會降低,輸出噪聲可能會增加。實際上,以前的一些CDM(差模電容)測量技術(shù)依據(jù)的是高阻抗反相電路、穩(wěn)定性分析以及噪聲分析。這些方法可能會非常繁瑣。

在諸如運算放大器之類的反饋放大器中,總有效輸入電容由 CDM與負(fù)輸入共模電容(或?qū)Φ氐腃CM–)并聯(lián)組成。CDM難以測量的原因之一是運算放大器的主要任務(wù)是防止兩個輸入不相關(guān)。與測量CDM的難度相比,直接測量對地的正輸入共模電容 CCM+相對容易一些。在運算放大器的同相引腳上放置一個較大的串聯(lián)電阻并施加正弦波或噪聲源,就可以使用網(wǎng)絡(luò)分析儀或頻譜分析儀來測量由運算放大器輸入電容而產(chǎn)生的-3dB的頻率響應(yīng)。假定CCM+與CCM–相同,特別是對于電壓反饋放大器。

但是,這些年來,測量CDM變得日益困難;運算放大器的固有特性會迫使其輸入相等,從而自舉CDM, 因此所使用的各種不同的技術(shù)都無法令人滿意。當(dāng)輸入被強制分開并進(jìn)行電流測量時,輸出將試圖進(jìn)行對抗。檢測CDM的傳統(tǒng)方法是間接測量,該方法依賴于相位裕度的降低,且因并聯(lián)使用CCM–等其他電容而變得更復(fù)雜。

LT1792

經(jīng)過 100% 全面測試的低電壓噪聲:6nV/√Hz (最大值)

A 級器件經(jīng)過 100% 的全面溫度測試

電壓增益:1,200,000 (最小值)

整個溫度范圍內(nèi)的失調(diào)電壓:800μV (最大值)

增益帶寬乘積:5.6MHz (典型值)

提供了采用 ±5V 電源時的保證規(guī)格

我們希望待測運算放大器能夠像客戶平時的用法一樣,在閉環(huán)條件下正常運行并執(zhí)行功能。建議的一種可行方法是分離輸入并進(jìn)行輸出削波,但是這可能會使內(nèi)部電路無法工作(取決于運算放大器拓?fù)洌?,因此實測電容可能無法反映實際工作電容。在這種方法中,不會對輸入進(jìn)行過度分離,以避免輸入級的非線性以及過多的輸出擺幅或削波。本文將介紹一種簡單直接的CDM測量方法。

測量CDM新方法

只使用增益為1的緩沖電路,并使用電流源激勵輸出和反相輸入。輸出和反相輸入將僅在運算放大器允許的范圍內(nèi)變動。在低頻下,輸出的變動很小,因此通過CDM的電流會很小。而在過高頻率下,測試可能會無效,況且結(jié)果也沒用。但在中頻下,運算放大器的增益帶寬會下降,但不至于太低,輸出變動仍可提供足夠大的電壓激勵和可測量的通過CDM的電流。

LTspice的本底噪聲幾乎不受限制,因此可以進(jìn)行簡單的測試仿真,如圖1所示。當(dāng)發(fā)現(xiàn)該技術(shù)在LTspice中相當(dāng)準(zhǔn)確有效后,接下來的問題就是“我可否在現(xiàn)實世界中獲得足夠的SNR以進(jìn)行良好的測量?”

9ec484da-44bf-11ec-b939-dac502259ad0.jpg

圖1. 直接測量LTspice中的 CDM阻抗。繪制V(r)/I(R1)曲線以獲得阻抗。在本例中,在1 MHz頻率下,-89.996°時Z為19.89437kΩ (10(85.97/20)), 利用公式C = 1/(2π × Z × Freq),Z正好為8 pF。

T該相位角幾乎等于-90°,這表明阻抗是容性的。2pF共模電容不會破壞測量,因為CCM–不在路徑中,且1/(2×π×Freq×CCM+)》》1Ω。

挑戰(zhàn):找到合適的設(shè)備和實際測試設(shè)置

如圖1所示,將2kΩ電阻串聯(lián)在運算放大器的輸出端,以將激勵從電壓源轉(zhuǎn)換為電流源。這將允許節(jié)點“r”中存在小電壓(它不會與在運算放大器的同相引腳中所看到的電壓相差太遠(yuǎn)),并將導(dǎo)致小電流流入待測CDM的輸入端之間。當(dāng)然,現(xiàn)在的輸出電壓很?。ㄓ纱郎y器件(DUT)進(jìn)行緩沖),而且CDM中的電流也很?。ㄔ诒痉抡嬷袨?7nA),因此在工作臺上使用1Ω電阻進(jìn)行測量將很困難。LTspice.ac和LTspice.tran仿真沒有電阻噪聲,但現(xiàn)實世界中的1Ω電阻具有130pA/√Hz的噪聲,從我們預(yù)期的57nA 電容電流中只能產(chǎn)生57nV信號。進(jìn)一步的仿真表明,用50Ω或1kΩ代替R1不會導(dǎo)致在目標(biāo)帶寬范圍內(nèi)的頻率下流入CCM+的損耗電流過大。為了獲得比簡單電阻更好的電流測量技術(shù),可使用跨阻放大器(TIA)代替R1。TIA輸入會連接到運算放大器的同相引腳,在該引腳上需要電流,同時電壓固定為虛地以消除CCM–中的電流。事實上,這正是Keysight/Agilent HP4192A等四端口阻抗分析儀的實現(xiàn)方式。HP4192A可以在5Hz至13MHz的頻率范圍內(nèi)進(jìn)行阻抗測量。市場上采用相同阻抗測量技術(shù)的一些新設(shè)備包括具有10Hz至120MHz范圍的E4990A阻抗分析儀和具有20Hz至2MHz范圍的精密LCR表(如Keysight E4980A)。

如下面圖2測試電路所示,由于阻抗分析儀內(nèi)部的TIA,運算放大器的同相引腳保持虛地狀態(tài)。正因如此, CCM+的兩個端子都被視為處于地電位,因此不會影響測量。DUT的CDM兩端產(chǎn)生的小電流將流經(jīng)TIA的反饋電阻Rr然后由內(nèi)部電壓表進(jìn)行測量。

9f357960-44bf-11ec-b939-dac502259ad0.png

圖2 CDM測試電路。

任何使用自動平衡電橋阻抗測量方法的四端口設(shè)備都是測量CDM的合適選擇。它們設(shè)計為從內(nèi)部振蕩器產(chǎn)生正弦波,該內(nèi)部振蕩器以零為中心點,具有正負(fù)擺幅,可用于雙電源供電。如果運算放大器DUT由單電源供電,則應(yīng)調(diào)整偏置功能,以使信號不會發(fā)生對地削波。圖3中使用了HP4192A,并顯示了與DUT的詳細(xì)連接。

圖4顯示了確切的測試設(shè)置,以使電路板和連線對CDM的寄生電容貢獻(xiàn)極小。任何通用電路板均可用于低速運算放大器,而高速運算放大器則需要更嚴(yán)格的PCB板布局。垂直接地的銅分隔板能確保輸入端和輸出端看不到與 DUT CDM平行的其他場路徑。

結(jié)果與討論

首先,在測量電路板的板電容時沒有使用DUT。圖4所示電路板的測量條件是16fF電容且沒有DUT。這是一個相當(dāng)小的電容,可以忽略不計,因為通常CDM的預(yù)期值為幾百至幾千fF。

使用這種新的CDM測量技術(shù),可以測量大多數(shù)JFET和CMOS輸入型運算放大器。為了說明該方法,以測量低噪聲精度JFET運算放大器LT1792為例。下表列出了在一定頻率范圍內(nèi)的阻抗(Z)、相位角(θ)、電抗XS和 CDM的計算值。當(dāng)相位角為-90°時,阻抗表現(xiàn)為純?nèi)菪浴?/p>

a0aff75c-44bf-11ec-b939-dac502259ad0.png

表1. 電源為±15 V時,LT1792在不同頻率下的阻抗測量

上述表1給出了在500kHz至5MHz頻率范圍內(nèi)的測量結(jié)果。在該頻率范圍內(nèi)的相位接近于純?nèi)菪裕ㄏ辔唤菫?89°至-90°)。同時,電抗XS決定了總輸入阻抗,即Z≈XS。CDM的計算平均值約為10.2pF。最高測量頻率為5MHz,因為該器件帶寬僅可達(dá)5.6MHz。更低頻率下 的結(jié)果變得非相干。推測這是由于運算放大器的行為使輸出電壓降低,CDM電流迅速消減,同時XS阻抗在低頻時變大。

還應(yīng)在每個階躍頻率處檢查運算放大器的輸出,以確保它不會被阻抗分析儀產(chǎn)生的信號過驅(qū)。來自HP4192A的該信號的幅度可在0.1V至1.1V范圍內(nèi)調(diào)節(jié),這剛好足以在運算放大器的輸出中產(chǎn)生擺動,并使反相輸入引腳中的電壓電平略微發(fā)生變動。圖5顯示了頻率為800kHz時,運算放大器輸出端的峰峰值無失真信號(綠色信號)為28mV。2.76V峰峰值幅度(1Vrms)的黃色信號是直接從分析儀的振蕩輸出端口探測得的。公平起見,可以任意決定不允許輸出失真,不論是對DUT還是對HP4192A檢波器。盡管該設(shè)置相對來說并不受探頭效應(yīng)的影響,但在獲取阻抗和相位的實際數(shù)據(jù)時已經(jīng)將探頭移除。

我們進(jìn)行了在不同電源電壓下測量CDM的測試。CDM對電源和共模電壓的依賴性會隨運算放大器的不同而有所不同;不同的拓?fù)浜?a target="_blank">晶體管類型預(yù)計會導(dǎo)致高壓電源和低壓電源不同的結(jié)寄生效應(yīng)。表2給出了電源穩(wěn)定在±5V范圍內(nèi)LT1792的結(jié)果。CDM的測量平均值為9.2pF,與采用±15V電源時的結(jié)果10pF相當(dāng)接近。因此,可以得出結(jié)論,LT1792的CDM不會隨電源電壓的改變而發(fā)生顯著變化。這與其CCM形成了鮮明的對比,后者會隨電源電壓發(fā)生顯著變化。

a16cb284-44bf-11ec-b939-dac502259ad0.png

表2. 電源為±5 V時,LT1792在不同頻率下的阻抗測量

同時,雙極性輸入運算放大器幾乎與其FET同類產(chǎn)品一樣簡單。但是,由于它們與CDM電流并聯(lián),因此它們的高輸入偏置電流和電流噪聲較為明顯。此外,雙極性差分對輸入內(nèi)在的固有差分電阻RDM也與CDM并聯(lián)。表3以低噪聲精密放大器ADA4004為例,顯示了其阻抗測量。顯然,相位并不表示純?nèi)菪孕袨?,因為它遠(yuǎn)離-90°。盡管4MHz、5MHz和10MHz頻率非常接近,但并聯(lián)等效阻抗RC模型將適合本例,以便能夠從其他電阻中提取出CDM。因此,表3中顯示了在一定頻率范圍內(nèi)的并聯(lián)電導(dǎo)GP, 電納BP和CDM的計算值,其中假定CPP等于CDM。

a1d56fb8-44bf-11ec-b939-dac502259ad0.png

表3. 電源為±15 V時,ADA4004在整個頻率范圍內(nèi)的阻抗測量

根據(jù)表3中的結(jié)果,可以估算出ADA4004的CDM約為6.4pF。結(jié)果還表明,在表3所示的整個頻率范圍內(nèi),CDM具有相當(dāng)大的并聯(lián)電導(dǎo)GP,并非純?nèi)菪訡DM。測量顯示該雙極性運算放大器的實際輸入差分電阻約為40kΩ(1/25μS)。

附注:我們嘗試了對其他類型運算放大器進(jìn)行測量,例如零漂移運算放大器(LTC2050)和高速雙極性運算放大器(LT6200)。結(jié)果非相干,推測原因是零漂移運算放大器中的開關(guān)偽現(xiàn)像以及高速雙極性運算放大器中的過大電流噪聲。

參考結(jié)論

測量CDM并不困難。需要注意的一點是,HP4192A以幅度和角度報告阻抗。電容讀數(shù)假定為簡單的串聯(lián)RC或并聯(lián)RC,而運算放大器的輸入阻抗可能要復(fù)雜得多。電容讀數(shù)不應(yīng)僅使用表面標(biāo)稱值。每個運算放大器均具有各自的獨特情況。輸入阻抗由容性電抗主導(dǎo)的頻率范圍可能因設(shè)計而異。輸入級設(shè)計、所用器件和工藝、米勒效應(yīng)以及封裝都可能對差分輸入阻抗及其測量產(chǎn)生很大的整體貢獻(xiàn)。我們對JFET輸入運算放大器和雙極性輸入運算放大器進(jìn)行了測量,展示CDM結(jié)果以及雙極性輸入運算放大器的RDM結(jié)果。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 放大器
    +關(guān)注

    關(guān)注

    143

    文章

    13528

    瀏覽量

    212912
  • 電容
    +關(guān)注

    關(guān)注

    99

    文章

    5960

    瀏覽量

    149807
收藏 人收藏

    評論

    相關(guān)推薦

    如何測量運算放大器總靜態(tài)電流?

    如何測量運算放大器總靜態(tài)電流?
    發(fā)表于 09-23 07:50

    簡述運算放大器的失調(diào)電壓

    是對運算放大器失調(diào)電壓的詳細(xì)闡述,內(nèi)容將圍繞其定義、產(chǎn)生原因、影響、衡量標(biāo)準(zhǔn)、減小方法以及實際應(yīng)用中的考慮因素等方面展開。
    的頭像 發(fā)表于 08-08 11:24 ?1067次閱讀
    簡述<b class='flag-5'>運算放大器</b>的失調(diào)電壓

    運算放大器的輸入電阻怎么算

    和微分等。運算放大器的性能指標(biāo)之一是輸入電阻,它影響著電路的輸入信號源和運算放大器之間的相互作用。本文將介紹運算放大器輸入電阻的計算方法和相關(guān)概念。 1.
    的頭像 發(fā)表于 07-12 11:47 ?1309次閱讀

    運算放大器和儀表放大器的區(qū)別

    在電子工程領(lǐng)域,運算放大器和儀表放大器是兩種常見的放大電路,它們在許多電子設(shè)備和系統(tǒng)中發(fā)揮著關(guān)鍵作用。盡管兩者在功能上都涉及到信號的放大,但它們在結(jié)構(gòu)、特性、應(yīng)用等方面存在著顯著的區(qū)別
    的頭像 發(fā)表于 05-30 18:01 ?2711次閱讀

    什么是理想的運算放大器?運算放大器的基本應(yīng)用

    運算放大器廣泛適用于各種物聯(lián)網(wǎng)家用電器和其它電子應(yīng)用領(lǐng)域的各類用途。例如,運算放大器用于放大來自傳感器和測量儀器的模擬信號。
    發(fā)表于 03-22 11:43 ?2145次閱讀
    什么是理想的<b class='flag-5'>運算放大器</b>?<b class='flag-5'>運算放大器</b>的基本應(yīng)用

    公式+案例 搞定同相運算放大器

     同相運算放大器是一種運算放大器,其輸出電壓和輸入電壓同相。反饋是通過一個電阻從運算放大器的輸出獲取到運算放大器的反相輸入,另一個電阻接地。
    發(fā)表于 02-15 11:02 ?1.3w次閱讀
    公式+案例 搞定同相<b class='flag-5'>運算放大器</b>

    運算放大器的工作原理 運算放大器的計算公式

    運算放大器(Operational Amplifier, 簡稱 Op Amp)是一種電子放大器,具有高放大倍數(shù)、寬帶頻率響應(yīng)和低失真度等特點,被廣泛應(yīng)用于模擬電路中。本文將詳細(xì)介紹運算放大器
    的頭像 發(fā)表于 01-30 14:18 ?3836次閱讀

    運算放大器為什么要采用差分放大

    運算放大器采用差分放大是因為差分放大器具有以下幾個優(yōu)點
    的頭像 發(fā)表于 01-04 18:16 ?1018次閱讀

    multisim運算放大器放大倍數(shù)在哪設(shè)置

    在Multisim中設(shè)置運算放大器放大倍數(shù)需要經(jīng)過以下幾個步驟: 打開Multisim軟件并創(chuàng)建新的電路設(shè)計文件。在工具欄中點擊“文件”(File)按鈕,然后選擇“新建”(New)來創(chuàng)建一個
    的頭像 發(fā)表于 12-28 11:11 ?6452次閱讀

    運算放大器電路分析串并聯(lián)

    運算放大器是一種非常重要的電路,廣泛應(yīng)用于模擬電路中。在本文中,我們將詳細(xì)分析運算放大器電路的串并聯(lián)。 運算放大器(Operational Amplifier,簡稱OP-AMP)是一種電子放大
    的頭像 發(fā)表于 12-20 09:40 ?2368次閱讀

    什么是運算放大器、比較器?

    什么是運算放大器、比較器?
    的頭像 發(fā)表于 12-15 16:53 ?1222次閱讀
    什么是<b class='flag-5'>運算放大器</b>、比較器?

    簡單認(rèn)識運算放大器

    運算放大器 (Operational Amplifier, Op-Amp)是一種能夠?qū)ξ⑷跣盘栠M(jìn)行放大的電路。運算放大器的信號輸入通常采用直流耦合、交流耦合、單端輸入或差分輸入等形式,信號輸出通常為
    的頭像 發(fā)表于 12-14 16:19 ?904次閱讀

    運算放大器的虛短是什么

    運算放大器的虛短(Virtual Short)是指在運算放大器的反饋電路中,將輸入端看作是短路的一種近似模型。
    的頭像 發(fā)表于 12-13 18:15 ?882次閱讀

    運算放大器的溫度特性

    運算放大器的溫度特性
    的頭像 發(fā)表于 12-13 15:19 ?744次閱讀
    <b class='flag-5'>運算放大器</b>的溫度特性

    運算放大器的“最大電源電流” 規(guī)格解析

    對于大多數(shù)IC(集成電路),數(shù)據(jù)手冊上都會列出最大電源 電流,但人們常常對其測量條件視而不見。對于某些軌到 軌輸出運算放大器,某些操作可能會導(dǎo)致電源電流比規(guī)定 的最大值高出2到10倍。本文探討在確定
    發(fā)表于 11-21 06:22