0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

PyTorch顯存機(jī)制分析

新機(jī)器視覺(jué) ? 來(lái)源:知乎 ? 作者:Connolly ? 2022-04-06 09:57 ? 次閱讀

作者最近兩年在研究分布式并行,經(jīng)常使用PyTorch框架。一開(kāi)始用的時(shí)候?qū)τ赑yTorch的顯存機(jī)制也是一知半解,連蒙帶猜的,經(jīng)常來(lái)知乎上來(lái)找答案,那么我就吸收大家的看法,為PyTorch的顯存機(jī)制做個(gè)小的總結(jié)吧。

01 理論知識(shí)

1.1 深度學(xué)習(xí)訓(xùn)練過(guò)程

開(kāi)門(mén)見(jiàn)山的說(shuō),PyTorch在進(jìn)行深度學(xué)習(xí)訓(xùn)練的時(shí)候,有4大部分的顯存開(kāi)銷(xiāo),分別是模型參數(shù)(parameters),模型參數(shù)的梯度(gradients),優(yōu)化器狀態(tài)(optimizer states)以及中間激活值(intermediate activations) 或者叫中間結(jié)果(intermediate results)。為了后面顯存分析闡述的方便,我將深度學(xué)習(xí)的訓(xùn)練定義4個(gè)步驟:
  1. 模型定義:定義了模型的網(wǎng)絡(luò)結(jié)構(gòu),產(chǎn)生模型參數(shù);
while(你想訓(xùn)練):
  1. 前向傳播:執(zhí)行模型的前向傳播,產(chǎn)生中間激活值;
  2. 后向傳播:執(zhí)行模型的后向傳播,產(chǎn)生梯度;
  3. 梯度更新:執(zhí)行模型參數(shù)的更新,第一次執(zhí)行的時(shí)候產(chǎn)生優(yōu)化器狀態(tài)。
在模型定義完之后,2~4循環(huán)執(zhí)行。

1.2 前向傳播

Linear層(或者叫Dense層,前饋神經(jīng)網(wǎng)絡(luò),全連接層等等...)舉例:假設(shè)他的權(quán)重矩陣為W,偏置向量為b,那么他的前向計(jì)算過(guò)程就是:,這里的X為該層的輸入向量,Y為輸出向量(中間激活值)

1.3 后向傳播(反向傳播)

參考了這篇文章《神經(jīng)網(wǎng)絡(luò)反向傳播的數(shù)學(xué)原理》https://zhuanlan.zhihu.com/p/22473137后向傳播回來(lái)了一個(gè)第l+1層的輸出誤差矩陣,用以計(jì)算該層的梯度和輸入誤差

1.4 梯度更新

接下來(lái)就是利用 W_diff 和 b_diff 進(jìn)行更新了: 當(dāng)然使用 Adam 優(yōu)化器的時(shí)候,實(shí)際的更新過(guò)程并沒(méi)有上面的這么簡(jiǎn)單。目前用的最多的是 AdamW ,可以看看這篇文章《當(dāng)前訓(xùn)練神經(jīng)網(wǎng)絡(luò)最快的方式:AdamW優(yōu)化算法+超級(jí)收斂》https://zhuanlan.zhihu.com/p/38945390)但是使用這一類(lèi)優(yōu)化器,也會(huì)帶來(lái)額外的顯存開(kāi)銷(xiāo)。對(duì)于每一個(gè)參數(shù),Adam都會(huì)為它準(zhǔn)備對(duì)應(yīng)的2個(gè)優(yōu)化器狀態(tài),分別是動(dòng)量(momentum)和方差(variance),用以加速模型的訓(xùn)練。02 顯存分析方法與Torch機(jī)制

2.1 分析方法

(1) No Nvidia-smi我看很多人現(xiàn)在還在用 nvidia-smi 來(lái)看 pytorch 的顯存占用,盯著跳來(lái)跳去的torch緩存區(qū)分析真的不累嗎。(貼一個(gè)Torch為什么不用Nvidia-smi看的圖)。而且PyTorch是有緩存區(qū)的設(shè)置的,意思就是一個(gè)Tensor就算被釋放了,進(jìn)程也不會(huì)把空閑出來(lái)的顯存還給GPU,而是等待下一個(gè)Tensor來(lái)填入這一片被釋放的空間。有什么好處?進(jìn)程不需要重新向GPU申請(qǐng)顯存了,運(yùn)行速度會(huì)快很多,有什么壞處?他不能準(zhǔn)確地給出某一個(gè)時(shí)間點(diǎn)具體的Tensor占用的顯存,而是顯示的已經(jīng)分配到的顯存和顯存緩沖區(qū)之和。這也是令很多人在使用PyTorch時(shí)對(duì)顯存占用感到困惑的罪魁禍?zhǔn)住?/span>(2) torch.cuda is all you need在分析PyTorch的顯存時(shí)候,一定要使用torch.cuda里的顯存分析函數(shù),我用的最多的是torch.cuda.memory_allocated()和torch.cuda.max_memory_allocated(),前者可以精準(zhǔn)地反饋當(dāng)前進(jìn)程中Torch.Tensor所占用的GPU顯存,后者則可以告訴我們到調(diào)用函數(shù)為止所達(dá)到的最大的顯存占用字節(jié)數(shù)。還有像torch.cuda.memory_reserved()這樣的函數(shù)則是查看當(dāng)前進(jìn)程所分配的顯存緩沖區(qū)是多少的。memory_allocated+memory_reserved就等于nvidia-smi中的值啦。非~常~好~用chao dasheng3bbbbdb4-afe4-11ec-aa7f-dac502259ad0.jpgTorch 官方文檔2.2 PyTorch context開(kāi)銷(xiāo)-----之前沒(méi)有提到PyTorch context的開(kāi)銷(xiāo),做個(gè)補(bǔ)充...我注意到有很多同學(xué)在做顯存分析的時(shí)候是為了在訓(xùn)練的時(shí)候可以把卡的顯存用滿,這個(gè)之前沒(méi)有考慮到呢。其實(shí)PyTorch context是我們?cè)谑褂胻orch的時(shí)候的一個(gè)大頭開(kāi)銷(xiāo)。主要參考的是論壇里的這篇討論:How do I create Torch Tensor without any wasted storage space/baggage?https://discuss.pytorch.org/t/how-do-i-create-torch-tensor-without-any-wasted-storage-space-baggage/131134什么是PyTorch context? 其實(shí)官方給他的稱(chēng)呼是CUDA context,就是在第一次執(zhí)行CUDA操作,也就是使用GPU的時(shí)候所需要?jiǎng)?chuàng)建的維護(hù)設(shè)備間工作的一些相關(guān)信息。如下圖所示這個(gè)值跟CUDA的版本,pytorch的版本以及所使用的設(shè)備都是有關(guān)系的。目前我在ubuntu的torch1.9上測(cè)過(guò)RTX 3090和V100的context 開(kāi)銷(xiāo)。其中3090用的CUDA 11.4,開(kāi)銷(xiāo)為1639MB;V100用的CUDA 10.2,開(kāi)銷(xiāo)為1351MB。感興趣的同學(xué)可以在shell中執(zhí)行下面這兩行代碼,然后用nvidia-smi去看看自己的環(huán)境里context的大小。然后用總大小減去context的大小再做顯存分析。

																										
																											importtorch temp=torch.tensor([1.0]).cuda()我估計(jì)會(huì)有人問(wèn)怎么去減小這個(gè)開(kāi)銷(xiāo)...官方也給了一個(gè)辦法,看看自己有哪些cuda依賴是不需要的,比如cuDNN,然后自己重新編譯一遍PyTorch。編譯的時(shí)候把對(duì)應(yīng)的包的flag給設(shè)為false就好了。我是還沒(méi)有試過(guò),要搭編譯的環(huán)境太難受了,而且還要經(jīng)常和庫(kù)做更新。

2.3Torch顯存分配機(jī)制

在PyTorch中,顯存是按頁(yè)為單位進(jìn)行分配的,這可能是CUDA設(shè)備的限制。就算我們只想申請(qǐng)4字節(jié)的顯存,CUDA也會(huì)為我們分配512字節(jié)或者1024字節(jié)的空間。

2.4Torch顯存釋放機(jī)制

在PyTorch中,只要一個(gè)Tensor對(duì)象在后續(xù)不會(huì)再被使用,那么PyTorch就會(huì)自動(dòng)回收該Tensor所占用的顯存,并以緩沖區(qū)的形式繼續(xù)占用顯存。要是實(shí)在看緩沖區(qū)不爽的話,也可以用torch.cuda.empty_cache()把它歸零,但是程序速度會(huì)變慢哦03 訓(xùn)練過(guò)程顯存分析為了讓大家方便理解,我這里用torch.nn.Linear(1024, 1024, bias=False) 來(lái)做例子。為了省事,loss函數(shù)則直接對(duì)輸出的樣本進(jìn)行求和得到。沒(méi)辦法,想直接執(zhí)行l(wèi)oss.backward()的話,loss得是標(biāo)量才行呢。示例代碼:

																									
																										import torch model = torch.nn.Linear(1024,1024, bias=False).cuda() optimizer = torch.optim.AdamW(model.parameters()) inputs = torch.tensor([1.0]*1024).cuda() # shape = (1024) outputs = model(inputs) # shape = (1024) loss = sum(outputs) # shape = (1) loss.backward() optimizer.step()

3.1 模型的定義

結(jié)論:顯存占用量約為參數(shù)量乘以4

																									
																										import torch model = torch.nn.Linear(1024,1024, bias=False).cuda() print(torch.cuda.memory_allocated())打印出來(lái)的數(shù)值為4194304,剛好等于1024×1024×4。

3.2 前向傳播過(guò)程

結(jié)論:顯存增加等于每一層模型產(chǎn)生的結(jié)果的顯存之和,且跟batch_size成正比。

																									
																										inputs = torch.tensor([1.0]*1024).cuda() # shape = (1024) memory + 4096 outputs = model(inputs) # memory + 4096代碼中,outputs為產(chǎn)生的中間激活值,同時(shí)它也恰好是該模型的輸出結(jié)果。在執(zhí)行完這一步之后,顯存增加了4096字節(jié)。(不算inputs的顯存的話)。

3.3 后向傳播過(guò)程

后向傳播會(huì)將模型的中間激活值給消耗并釋放掉掉,并為每一個(gè)模型中的參數(shù)計(jì)算其對(duì)應(yīng)的梯度。在第一次執(zhí)行的時(shí)候,會(huì)為模型參數(shù)分配對(duì)應(yīng)的用來(lái)存儲(chǔ)梯度的空間。

																									
																										loss = sum(outputs) # memory + 512(torch cuda分配最小單位) temp = torch.cuda.memory_allocated() loss.backward() print(torch.cuda.memory_allocated() - temp) # 第一次增加4194304第一次執(zhí)行時(shí)顯存增加:4194304字節(jié) - 激活值大小;第二次以后執(zhí)行顯存減少:激活值大??;Note:由于這個(gè)中間激活值被賦給了outputs,所以后面在后向傳播的時(shí)候會(huì)發(fā)現(xiàn),這個(gè)outputs的顯存沒(méi)有被釋放掉。但是當(dāng)層數(shù)變深的時(shí)候,就能明顯看到變化了。為了讓大家看到變化,再寫(xiě)一段代碼~

																									
																										import torch # 模型初始化 linear1 = torch.nn.Linear(1024,1024, bias=False).cuda() # + 4194304 print(torch.cuda.memory_allocated()) linear2 = torch.nn.Linear(1024, 1, bias=False).cuda() # + 4096 print(torch.cuda.memory_allocated()) # 輸入定義 inputs = torch.tensor([[1.0]*1024]*1024).cuda() # shape = (1024,1024) # + 4194304 print(torch.cuda.memory_allocated()) # 前向傳播 loss = sum(linear2(linear1(inputs))) # shape = (1) # memory + 4194304 + 512 print(torch.cuda.memory_allocated()) # 后向傳播 loss.backward() # memory - 4194304 + 4194304 + 4096 print(torch.cuda.memory_allocated()) # 再來(lái)一次~ loss = sum(linear2(linear1(inputs))) # shape = (1) # memory + 4194304 (512沒(méi)了,因?yàn)閘oss的ref還在) print(torch.cuda.memory_allocated()) loss.backward() # memory - 4194304 print(torch.cuda.memory_allocated())

3.4 參數(shù)更新


																									
																										optimizer.step()#第一次增加8388608,第二次就不增不減了哦第一次執(zhí)行時(shí),會(huì)為每一個(gè)參數(shù)初始化其優(yōu)化器狀態(tài),對(duì)于這里的AdamW而言,每一個(gè)參數(shù)需要4*2=8個(gè)字節(jié)。第二次開(kāi)始,不會(huì)再額外分配顯存。顯存開(kāi)銷(xiāo):第一次: 增加8388608字節(jié)第二次及以后: 無(wú)增減3.5 Note由于計(jì)算機(jī)計(jì)算的特性,有一些計(jì)算操作在計(jì)算過(guò)程中是會(huì)帶來(lái)額外的顯存開(kāi)銷(xiāo)的。但是這種開(kāi)銷(xiāo)在torch.memory_allocated中是不能被察覺(jué)的。比如在AdamW在進(jìn)行某一層的更新的時(shí)候,會(huì)帶來(lái)2倍該層參數(shù)量大小的臨時(shí)額外開(kāi)銷(xiāo)。這個(gè)在max_memory_allocated中可以看到。在本例中就是8388608字節(jié)。

審核編輯 :李倩


聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4717

    瀏覽量

    100000
  • 顯存
    +關(guān)注

    關(guān)注

    0

    文章

    108

    瀏覽量

    13614
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    794

    瀏覽量

    13009

原文標(biāo)題:綜述:PyTorch顯存機(jī)制分析

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    顯存技術(shù)不斷升級(jí),AI計(jì)算中如何選擇合適的顯存

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)顯存,是顯卡上用于存儲(chǔ)圖像數(shù)據(jù)、紋理、幀緩沖區(qū)等的內(nèi)存。它的大小直接決定了顯卡能夠同時(shí)處理的數(shù)據(jù)量。 ? 在AI計(jì)算中,顯存的大小對(duì)處理大規(guī)模數(shù)據(jù)集、深度學(xué)習(xí)模型的訓(xùn)練
    的頭像 發(fā)表于 09-11 00:11 ?2169次閱讀

    pytorch怎么在pycharm中運(yùn)行

    第一部分:PyTorch和PyCharm的安裝 1.1 安裝PyTorch PyTorch是一個(gè)開(kāi)源的機(jī)器學(xué)習(xí)庫(kù),用于構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)。要在PyCharm中使用PyTorch,首先需
    的頭像 發(fā)表于 08-01 16:22 ?525次閱讀

    pycharm如何調(diào)用pytorch

    引言 PyTorch是一個(gè)開(kāi)源的機(jī)器學(xué)習(xí)庫(kù),廣泛用于計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理等領(lǐng)域。PyCharm是一個(gè)流行的Python集成開(kāi)發(fā)環(huán)境(IDE),提供了代碼編輯、調(diào)試、測(cè)試等功能。將PyTorch
    的頭像 發(fā)表于 08-01 15:41 ?278次閱讀

    pytorch如何訓(xùn)練自己的數(shù)據(jù)

    本文將詳細(xì)介紹如何使用PyTorch框架來(lái)訓(xùn)練自己的數(shù)據(jù)。我們將從數(shù)據(jù)準(zhǔn)備、模型構(gòu)建、訓(xùn)練過(guò)程、評(píng)估和測(cè)試等方面進(jìn)行講解。 環(huán)境搭建 首先,我們需要安裝PyTorch。可以通過(guò)訪問(wèn)PyTorch官網(wǎng)
    的頭像 發(fā)表于 07-11 10:04 ?271次閱讀

    pytorch中有神經(jīng)網(wǎng)絡(luò)模型嗎

    當(dāng)然,PyTorch是一個(gè)廣泛使用的深度學(xué)習(xí)框架,它提供了許多預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型。 PyTorch中的神經(jīng)網(wǎng)絡(luò)模型 1. 引言 深度學(xué)習(xí)是一種基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)技術(shù),它在圖像識(shí)別、自然語(yǔ)言
    的頭像 發(fā)表于 07-11 09:59 ?527次閱讀

    PyTorch的介紹與使用案例

    PyTorch是一個(gè)基于Python的開(kāi)源機(jī)器學(xué)習(xí)庫(kù),它主要面向深度學(xué)習(xí)和科學(xué)計(jì)算領(lǐng)域。PyTorch由Meta Platforms(原Facebook)的人工智能研究團(tuán)隊(duì)開(kāi)發(fā),并逐漸發(fā)展成為深度
    的頭像 發(fā)表于 07-10 14:19 ?223次閱讀

    tensorflow和pytorch哪個(gè)更簡(jiǎn)單?

    PyTorch更簡(jiǎn)單。選擇TensorFlow還是PyTorch取決于您的具體需求和偏好。如果您需要一個(gè)易于使用、靈活且具有強(qiáng)大社區(qū)支持的框架,PyTorch可能是一個(gè)更好的選擇。如果您需要一個(gè)在
    的頭像 發(fā)表于 07-05 09:45 ?375次閱讀

    PyTorch的特性和使用方法

    PyTorch是一個(gè)開(kāi)源的Python機(jī)器學(xué)習(xí)庫(kù),由Meta Platforms(前身為Facebook)的人工智能研究團(tuán)隊(duì)開(kāi)發(fā),并于2017年1月正式推出。PyTorch基于Torch庫(kù),但
    的頭像 發(fā)表于 07-02 14:27 ?343次閱讀

    如何使用PyTorch建立網(wǎng)絡(luò)模型

    PyTorch是一個(gè)基于Python的開(kāi)源機(jī)器學(xué)習(xí)庫(kù),因其易用性、靈活性和強(qiáng)大的動(dòng)態(tài)圖特性,在深度學(xué)習(xí)領(lǐng)域得到了廣泛應(yīng)用。本文將從PyTorch的基本概念、網(wǎng)絡(luò)模型構(gòu)建、優(yōu)化方法、實(shí)際應(yīng)用等多個(gè)方面,深入探討使用PyTorch
    的頭像 發(fā)表于 07-02 14:08 ?245次閱讀

    PyTorch與PyCharm的區(qū)別

    在深入探討PyTorch與PyCharm的區(qū)別時(shí),我們首先需要明確兩者在計(jì)算機(jī)科學(xué)和數(shù)據(jù)科學(xué)領(lǐng)域中的不同定位和功能。PyTorch是一個(gè)開(kāi)源的深度學(xué)習(xí)庫(kù),而PyCharm則是一款功能強(qiáng)大
    的頭像 發(fā)表于 07-02 12:36 ?1282次閱讀

    使用PyTorch構(gòu)建神經(jīng)網(wǎng)絡(luò)

    PyTorch是一個(gè)流行的深度學(xué)習(xí)框架,它以其簡(jiǎn)潔的API和強(qiáng)大的靈活性在學(xué)術(shù)界和工業(yè)界得到了廣泛應(yīng)用。在本文中,我們將深入探討如何使用PyTorch構(gòu)建神經(jīng)網(wǎng)絡(luò),包括從基礎(chǔ)概念到高級(jí)特性的全面解析。本文旨在為讀者提供一個(gè)完整的、技術(shù)性的指南,幫助理解并實(shí)踐
    的頭像 發(fā)表于 07-02 11:31 ?430次閱讀

    NVIDIA RTX 5090痛失512位顯存!

    NVIDIA有望在今年底或明年初發(fā)布下一代RTX 50系列顯卡,大概率首發(fā)配備新一代GDDR7顯存,但是顯存位寬和之前的說(shuō)法不太一樣。
    的頭像 發(fā)表于 03-11 16:02 ?609次閱讀
    NVIDIA RTX 5090痛失512位<b class='flag-5'>顯存</b>!

    TorchFix:基于PyTorch的代碼靜態(tài)分析

    TorchFix是我們最近開(kāi)發(fā)的一個(gè)新工具,旨在幫助PyTorch用戶維護(hù)健康的代碼庫(kù)并遵循PyTorch的最佳實(shí)踐。首先,我想要展示一些我們努力解決的問(wèn)題的示例。
    的頭像 發(fā)表于 12-18 15:20 ?944次閱讀

    PyTorch 與 TensorFlow的區(qū)別分析

    PyTorch是一個(gè)開(kāi)源的深度學(xué)習(xí)框架,建立于Torch之上,底層為C++,并標(biāo)榜Python First,強(qiáng)調(diào)其為Python 語(yǔ)言量身打造的,使用上就與Python項(xiàng)目的撰寫(xiě)并沒(méi)有太大的差異,也能夠與Python的套件相整合。
    發(fā)表于 10-27 10:41 ?1325次閱讀
    <b class='flag-5'>PyTorch</b> 與 TensorFlow的區(qū)別<b class='flag-5'>分析</b>

    基于PyTorch的模型并行分布式訓(xùn)練Megatron解析

    NVIDIA Megatron 是一個(gè)基于 PyTorch 的分布式訓(xùn)練框架,用來(lái)訓(xùn)練超大Transformer語(yǔ)言模型,其通過(guò)綜合應(yīng)用了數(shù)據(jù)并行,Tensor并行和Pipeline并行來(lái)復(fù)現(xiàn) GPT3,值得我們深入分析其背后機(jī)理。
    的頭像 發(fā)表于 10-23 11:01 ?2329次閱讀
    基于<b class='flag-5'>PyTorch</b>的模型并行分布式訓(xùn)練Megatron解析