0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

全新微縮之旅:延續(xù)摩爾定律的方法和DTCO的應(yīng)用

21克888 ? 來(lái)源:廠商供稿 ? 作者:應(yīng)用材料公司 ? 2022-05-17 18:03 ? 次閱讀

美國(guó)時(shí)間4月21日,應(yīng)用材料公司舉辦了“全新微縮之旅”大師課。期間,我們重點(diǎn)討論了要在未來(lái)若干年內(nèi)提升晶體管密度,芯片制造商正在尋求互補(bǔ)的兩條道路。其一是延續(xù)傳統(tǒng)的摩爾定律二維微縮,也就是使用EUV光刻和材料工程打造出更小的特征。另一條則是使用設(shè)計(jì)技術(shù)協(xié)同優(yōu)化(DTCO)和三維技巧,對(duì)邏輯單元布局進(jìn)行巧妙優(yōu)化,這樣無(wú)需對(duì)光刻?hào)啪噙M(jìn)行任何更改即可增加密度。這篇博客我們將英文博客原文摘選,一起回顧下該堂大師課程的技術(shù)精髓。

回顧二維微縮的發(fā)展

眾所周知,傳統(tǒng)的摩爾定律二維微縮定義了半個(gè)多世紀(jì)以來(lái)芯片行業(yè)的技術(shù)發(fā)展路線圖。在2000年前后的丹納德微縮時(shí)代,我們每?jī)赡陮⒕w管尺寸縮減50%。我們縮小了用于控制晶體管開(kāi)關(guān)狀態(tài)的柵極,其長(zhǎng)度定義了節(jié)點(diǎn):90納米、65納米等等。我們成比例縮小了氧化柵極,芯片制造商由此享受到了性能、功率和面積成本(或稱“PPAC”)的同步改善?;厥走^(guò)往,這些進(jìn)步來(lái)得如此容易!


2000年到2010年間,柵極長(zhǎng)度和氧化柵極微縮達(dá)到了極限:我們可以對(duì)更小的特征進(jìn)行圖形化,但這并非沒(méi)有物理問(wèn)題,例如柵極泄漏和接觸電阻,這會(huì)抵消面積成本降低所帶來(lái)的性能和功率效益。于是我們過(guò)渡到了“等效微縮”,柵極長(zhǎng)度仍為30納米左右,物理氧化柵極的微縮陷入停滯。節(jié)點(diǎn)名稱不再與實(shí)際尺寸掛鉤。我們轉(zhuǎn)而使用應(yīng)變硅和高K值金屬柵極等材料工程工藝。如此一來(lái),即使“面積和成本(AC)”改善有所放緩,我們?nèi)钥梢跃S持“性能和功率(PP)”效益。2010年往后,三維FinFET架構(gòu)誕生,使得PP和AC都更上一層樓。


當(dāng)光刻技術(shù)停留在193納米浸沒(méi)時(shí),材料工程也同樣發(fā)揮了作用——將單程圖形化限制在約80納米柵距。雙重圖形化和四重圖形化分別使微縮能力進(jìn)一步達(dá)到40納米和20納米柵距。

了解EUV(極紫外光)——使圖形化更簡(jiǎn)單,卻令布線更加復(fù)雜

當(dāng)發(fā)展至5納米節(jié)點(diǎn)時(shí),EUV技術(shù)應(yīng)運(yùn)而生,并成就了25納米柵間距圖形化。然而,要想讓EUV更具實(shí)用性,則需要新的材料工程技術(shù)。舉例而言,在EUV分辨率極限水平上,晶體管接觸通孔很難使用傳統(tǒng)的阻擋層加填充方法來(lái)填充金屬。因?yàn)榱艚o金屬布線的面積實(shí)在太小,并且還導(dǎo)致了接觸電阻呈指數(shù)增加。與此同時(shí),“集成材料解決方案”(Integrated Materials Solutions)則可實(shí)現(xiàn)選擇性觸點(diǎn)沉積,幫助取消阻擋層的同時(shí),還產(chǎn)生了更寬的低電阻接觸點(diǎn)。

微縮新方法及其挑戰(zhàn)

1.進(jìn)一步EUV微縮的方法

有沒(méi)有新的方法可以進(jìn)一步縮小尺寸?答案是肯定的,有如下兩條道路:

?持續(xù)的內(nèi)在微縮——即延用傳統(tǒng)的二維摩爾定律。也就是使用EUV光刻和材料工程打造出更小的特征。摩爾定律造就了3納米節(jié)點(diǎn)約一半的邏輯密度提高。

?使用技術(shù)協(xié)同優(yōu)化(DTCO)和三維技巧,對(duì)邏輯單元布局進(jìn)行巧妙優(yōu)化,實(shí)現(xiàn)3納米節(jié)點(diǎn)另外一半的邏輯密度提高。

2.EUV微縮面臨的材料工程新挑戰(zhàn)

使用EUV技術(shù)生成光子難度極大且成本高昂。因此,我們要讓EUV光刻使用的光子數(shù)量?jī)H為深紫外刻蝕的十分之一。此外,我們用EUV刻蝕的圖形(比如交替的線條和間隔)就會(huì)細(xì)很多。這樣一來(lái),EUV光刻膠的厚度也會(huì)大大縮減,我們便能用更少的光子開(kāi)發(fā)光掩模圖形,而且這還有助于防止細(xì)圖形坍塌黏連。


在4月21日的大師課上,我們探討了使用EUV進(jìn)而延續(xù)芯片的微縮。前提是我們能同時(shí)解決材料工程和量測(cè)方法的六大關(guān)鍵問(wèn)題,如下所示:

?問(wèn)題一:糾正EUV光刻膠的隨機(jī)誤差

?問(wèn)題二:降低EUV圖形化成本

?問(wèn)題三:提高EUV圖形鍍膜的精度

?問(wèn)題四:在刻蝕晶圓之前確保光刻膠圖形的保真度

?問(wèn)題五:解決“邊緣布局錯(cuò)誤”

?問(wèn)題六:使用大數(shù)據(jù)和人工智能加快進(jìn)展

深入了解以上6個(gè)問(wèn)題請(qǐng)查看應(yīng)用材料公司4月14日的博客內(nèi)容https://blog.appliedmaterials.com/

使用技術(shù)協(xié)同優(yōu)化(DTCO)和環(huán)繞柵極(GAA)晶體管

如上所言,在3納米節(jié)點(diǎn),50%的邏輯密度改進(jìn)來(lái)自“內(nèi)在微縮”,即傳統(tǒng)的二維微縮。而另外50%則來(lái)自“DTCO”,即設(shè)計(jì)技術(shù)協(xié)同優(yōu)化?!皟?nèi)在微縮”已經(jīng)為行業(yè)服務(wù)了50多年,而最近出現(xiàn)的DTCO則有助于彌補(bǔ)傳統(tǒng)摩爾定律微縮的放緩。DTCO為我們帶來(lái)了縮小邏輯單元、增加密度和改善面積成本的最新方法。

1.認(rèn)識(shí)DTCO

DTCO 指的是巧妙改變邏輯單元元件的布局,從而在不更改光刻?hào)啪嗟那闆r下實(shí)現(xiàn)晶體管的進(jìn)一步微縮。如今已有數(shù)種DTCO技巧用于芯片設(shè)計(jì)。例如,在隔離單個(gè)邏輯單元時(shí),設(shè)計(jì)人員用單擴(kuò)散替代了雙擴(kuò)散,從而實(shí)現(xiàn)了明顯的微縮效果。設(shè)計(jì)師們還將每個(gè)晶體管的鰭片數(shù)量從三個(gè)減至兩個(gè),這稱為“減鰭”(fin depopulation)處理。同樣,設(shè)計(jì)人員也在努力實(shí)現(xiàn)“柵極上觸點(diǎn)”(contact over gate),也就是將晶體管的電接觸從側(cè)面移到頂部。


在4月21日的大師課上,我們介紹了一項(xiàng)新涌現(xiàn)的創(chuàng)新成果——環(huán)繞柵極晶體管(詳情請(qǐng)點(diǎn)擊此處)。它利用了DTCO概念提升邏輯密度,同時(shí)改善芯片性能和功率。

2.認(rèn)識(shí)環(huán)繞柵極晶體管

2010年,F(xiàn)inFET的問(wèn)世標(biāo)志著芯片設(shè)計(jì)從平面二維晶體管轉(zhuǎn)向三維晶體管。而環(huán)繞柵極(GAA)晶體管則將成為繼FinFET之后芯片業(yè)最重大的設(shè)計(jì)轉(zhuǎn)變之一。

將GAA描述成“DTCO的一種形式”可能顯得不合常情,但它的確符合DTCO的定義:GAA是通過(guò)巧妙重排晶體管元件,在同等光刻?hào)啪嘞聦?shí)現(xiàn)高于FinFET的邏輯密度。值得慶幸的是,伴隨GAA而來(lái)的還有材料工程創(chuàng)新,這些創(chuàng)新成果將大大改善功率和性能。如下我們將逐一介紹GAA的面積節(jié)約效果、探討外延生長(zhǎng)和選擇性刻蝕的更多用處,并解釋“集成材料解決方案(Integrated Materials Solutions)”如何令GAA晶體管占用更小的空間、發(fā)揮更大的作用。


概念上講,GAA就像是把FinFET晶體管旋轉(zhuǎn)90度。柵極環(huán)繞在各溝道的全部四周——與只能從三面包圍溝道的FinFET相比又更上一個(gè)臺(tái)階。DTCO的優(yōu)點(diǎn)是邏輯單元在X和Y方向上都會(huì)縮小。設(shè)計(jì)師可以在保持性能不變的情況下大幅降低面積成本。不過(guò),他們也許更有可能采取另一種做法:加寬納米片,以增加驅(qū)動(dòng)電流,從而將性能提高多達(dá)25%,同時(shí)將密度增加25%左右。

外延生長(zhǎng)和選擇性刻蝕對(duì)GAA功率和性能有至關(guān)重要的影響

從制造角度來(lái)看,GAA借用了許多成熟的FinFET制造工藝。然而,關(guān)鍵區(qū)別在于如何確定并控制溝道的寬度和均勻性。對(duì)于FinFET,溝道寬度由光刻和刻蝕決定,且往往存在易變性,這會(huì)降低晶體管性能。對(duì)于GAA,溝道寬度由更精確的外延生長(zhǎng)和選擇性刻蝕來(lái)定義,這能實(shí)現(xiàn)更高的溝道均勻性和晶體管性能。


GAA采用兩種外延生長(zhǎng)??焖俚摹叭庋由L(zhǎng)”(blanket epitaxy)用于沉積交替的硅層和硅鍺層,以形成納米片形結(jié)構(gòu)。隨后,慢速的“選擇性外延生長(zhǎng)”(selective epitaxy)用來(lái)將應(yīng)力工程設(shè)計(jì)應(yīng)用于納米片形結(jié)構(gòu),以優(yōu)化晶體管性能。最后,選擇性刻蝕用于去除硅鍺層——這些硅鍺層是“犧牲層”,僅用于輔助形成晶體管電子導(dǎo)通的溝道。


集成材料解決方案:縮小氧化柵極和高K值金屬柵極新方法

溝道需要經(jīng)過(guò)進(jìn)一步設(shè)計(jì),以提升晶體管性能。我們需要沉積一個(gè)柵極氧化層,從全部四周包圍溝道。氧化柵極越薄,驅(qū)動(dòng)電流就越高(這能優(yōu)化開(kāi)關(guān)性能),漏電流也越低,從而減少功率浪費(fèi)和發(fā)熱。事實(shí)上,氧化柵極微縮已停滯多年,這方面的突破對(duì)芯片制造商來(lái)說(shuō)無(wú)疑是好消息。

接下來(lái)還要以高K值金屬柵極堆疊來(lái)包圍氧化柵極,高K值金屬柵極堆疊負(fù)責(zé)控制晶體管開(kāi)關(guān)狀態(tài)。設(shè)計(jì)這種柵極極其困難,因?yàn)镚AA溝道之間的間距通常只有10納米,遠(yuǎn)小于FinFET的溝道間距。金屬柵極堆疊的寬度需要經(jīng)過(guò)專門設(shè)計(jì),以針對(duì)具體的終端市場(chǎng),從電池供電移動(dòng)設(shè)備到高性能服務(wù)器等等,優(yōu)化芯片功率和性能。業(yè)界需要一種能在極小的空間內(nèi)實(shí)現(xiàn)閾值調(diào)諧的解決方案。

應(yīng)用材料公司已經(jīng)準(zhǔn)備好了覆蓋范圍最廣泛的GAA制造產(chǎn)品線,包含涉及外延生長(zhǎng)、原子層沉積和選擇性刻蝕的全新生產(chǎn)步驟,以及兩項(xiàng)全新的用于制造理想GAA氧化柵極和金屬柵極的集成材料解決方案(Integrated Materials Solutions?)。

更多思考:我們還能把晶體管和芯片縮小到什么程度?

回顧4月21日的“全新微縮之旅”大師課詳細(xì)介紹了兩種微縮方法:用EUV推進(jìn)傳統(tǒng)的摩爾定律二維微縮,以及采用DTCO技巧(如“GAA晶體管”)。有了EUV,微縮面臨的挑戰(zhàn)已不在于圖形化,而是在于電阻隨晶體管觸點(diǎn)和布線的不斷縮小而呈指數(shù)增長(zhǎng)。在美國(guó)時(shí)間5月26日的“大師課”上,我們還將繼續(xù)探討這些挑戰(zhàn),并一起了解背面配電網(wǎng)絡(luò)和異構(gòu)集成。

相關(guān)閱讀:
1.博客1——New Ways to Shrink: Further EUV Scaling Depends on Materials Engineering and Metrology Breakthroughs:https://blog.appliedmaterials.com/new-ways-shrink-further-euv-scaling-depends-materials-engineering-and-metrology-breakthroughs

2.博客2——Newer Ways to Shrink:https://blog.appliedmaterials.com/newer-ways-shrink

3.“全新微縮之旅”大師課鏈接:https://investor.appliedmaterials.com/events/event-details/new-ways-shrink-master-class

4.應(yīng)用材料公司微信公眾號(hào)文章:https://mp.weixin.qq.com/s/LHyt9J6VWGwmM1f4c2AI2g

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    延續(xù)摩爾定律,英特爾強(qiáng)推新制程

    (Moore‘s Law)的過(guò)去、現(xiàn)在與未來(lái)發(fā)表開(kāi)幕演說(shuō),分享英特爾的觀點(diǎn)。雖然摩爾定律是否能繼續(xù)延續(xù)下去,近年來(lái)始終在業(yè)界激起正反兩面的討論,但從英特爾的評(píng)估資料看來(lái),摩爾定律未來(lái)還能延續(xù)
    發(fā)表于 05-16 08:41 ?2562次閱讀

    摩爾定律的現(xiàn)在及未來(lái)

    封裝的作用及其對(duì)摩爾定律微縮的貢獻(xiàn)正在演進(jìn)。直到2010年代,封裝的主要作用是在主板和芯片之間傳輸電源和信號(hào),并保護(hù)芯片。
    發(fā)表于 03-28 17:37 ?2174次閱讀
    <b class='flag-5'>摩爾定律</b>的現(xiàn)在及未來(lái)

    介紹28 nm創(chuàng)新技術(shù),超越摩爾定律

    介紹28 nm創(chuàng)新技術(shù),超越摩爾定律
    發(fā)表于 08-13 22:26

    半導(dǎo)體行業(yè)的里程碑“摩爾定律”竟是這樣來(lái)的

    的制程進(jìn)化速度大約是每年半導(dǎo)體芯片上集成的晶體管數(shù)量翻倍,于是接“摩爾定律”告誡半導(dǎo)體廠商們:發(fā)展芯片和制程需要在成本和風(fēng)險(xiǎn)中折中,這也是半導(dǎo)體(IC)行業(yè)未來(lái)的發(fā)展道路?!?b class='flag-5'>摩爾定律”的神奇還能延續(xù)多久
    發(fā)表于 07-14 17:00

    摩爾定律還能走多遠(yuǎn)看了就知道

    摩爾定律還能走多遠(yuǎn)?—— CPU 的內(nèi)存瓶頸
    發(fā)表于 02-01 07:27

    摩爾定律在測(cè)試領(lǐng)域有哪些應(yīng)用?

    摩爾定律給基于PXI的模塊化設(shè)備造成了什么影響?摩爾定律在測(cè)試領(lǐng)域有哪些應(yīng)用?
    發(fā)表于 04-13 06:10

    請(qǐng)問(wèn)摩爾定律死不死?

    請(qǐng)問(wèn)摩爾定律死不死?
    發(fā)表于 06-17 08:25

    摩爾定律,摩爾定律是什么意思

    摩爾定律,摩爾定律是什么意思 摩爾定律是由英特爾(Intel)創(chuàng)始人之一戈登·摩爾(Gordon Moore)提出來(lái)的。其
    發(fā)表于 02-26 11:28 ?1564次閱讀

    摩爾定律_摩爾定律是什么

    電子發(fā)燒友網(wǎng)為大家整理了摩爾定律專題,講述了摩爾定律的定義,摩爾定律的由來(lái)與發(fā)展,深入全面的講解了摩爾定律是什么。供大家認(rèn)識(shí)學(xué)習(xí)
    發(fā)表于 05-21 16:19
    <b class='flag-5'>摩爾定律</b>_<b class='flag-5'>摩爾定律</b>是什么

    摩爾定律是什么_摩爾定律提出者及含義

     摩爾定律是由英特爾(Intel)創(chuàng)始人之一戈登·摩爾(GordonMoore)提出來(lái)的。
    的頭像 發(fā)表于 03-09 09:18 ?3w次閱讀

    摩爾定律的指標(biāo)性人物預(yù)言半導(dǎo)體晶體管將會(huì)持續(xù)微縮

    作為摩爾定律的指標(biāo)性人物,胡正明不僅是延續(xù)定律的“推手”、發(fā)明FinFET與FDSOI的科學(xué)家,同時(shí)也是前瞻行業(yè)未來(lái)的“預(yù)言者”。胡正明10日在中國(guó)國(guó)際半導(dǎo)體技術(shù)大會(huì)(CSTIC)上持“謹(jǐn)慎樂(lè)觀”觀點(diǎn)指出,半導(dǎo)體晶體管將會(huì)持續(xù)
    的頭像 發(fā)表于 03-15 09:31 ?5673次閱讀

    2nm芯片符合摩爾定律摩爾定律能夠延續(xù)下去嗎

    摩爾定律即將失效的言論從7nm工藝開(kāi)始就一直有人在傳播,不過(guò)與之相反的是摩爾定律一直在沿用下去。去年IBM公司公布了其研制的全球首顆2nm芯片,不過(guò)IBM的技術(shù)還不能支持量產(chǎn)2nm芯片,也沒(méi)有能夠
    的頭像 發(fā)表于 07-05 09:42 ?1487次閱讀

    產(chǎn)業(yè)觀察:芯片綠色節(jié)能也是延續(xù)摩爾定律

    來(lái)源:中國(guó)電子報(bào) 戈登?摩爾剛剛?cè)ナ溃瑯I(yè)界關(guān)于摩爾定律未來(lái)如何演進(jìn)的分析再次多了起來(lái)。當(dāng)前主流觀點(diǎn)集中在“延續(xù)摩爾More Moore”、“超越摩爾
    的頭像 發(fā)表于 04-13 16:41 ?509次閱讀

    摩爾定律不會(huì)死去!這項(xiàng)技術(shù)將成為摩爾定律的拐點(diǎn)

    因此,可以看出,為了延續(xù)摩爾定律,專家絞盡腦汁想盡各種辦法,包括改變半導(dǎo)體材料、改變整體結(jié)構(gòu)、引入新的工藝。但不可否認(rèn)的是,摩爾定律在近幾年逐漸放緩。10nm、7nm、5nm……芯片制程節(jié)點(diǎn)越來(lái)越先進(jìn),芯片物理瓶頸也越來(lái)越難克服
    的頭像 發(fā)表于 11-03 16:09 ?546次閱讀
    <b class='flag-5'>摩爾定律</b>不會(huì)死去!這項(xiàng)技術(shù)將成為<b class='flag-5'>摩爾定律</b>的拐點(diǎn)

    應(yīng)對(duì)傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法

    應(yīng)對(duì)傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法
    的頭像 發(fā)表于 12-05 15:32 ?459次閱讀
    應(yīng)對(duì)傳統(tǒng)<b class='flag-5'>摩爾定律</b><b class='flag-5'>微縮</b>挑戰(zhàn)需要芯片布線和集成的新<b class='flag-5'>方法</b>