0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

國產(chǎn)深度學(xué)習(xí)框架的挑戰(zhàn)和機會

Carol Li ? 來源:電子發(fā)燒友網(wǎng) ? 作者:李彎彎 ? 2022-06-07 00:01 ? 次閱讀

電子發(fā)燒友網(wǎng)報道(文/李彎彎)深度學(xué)習(xí)框架是一種底層開發(fā)工具,是集深度學(xué)習(xí)核心訓(xùn)練和推理框架、基礎(chǔ)模型庫、端到端開發(fā)套件、豐富的工具組件于一體的平臺。

有了深度學(xué)習(xí)框架,工程師在工作時調(diào)試算法,就可以更快速、更高效。通俗一點講,深度學(xué)習(xí)框架相當(dāng)于是AI時代的操作系統(tǒng),如同PC時代Windows,移動互聯(lián)網(wǎng)時代的iOS和安卓。

國內(nèi)外都有哪些深度學(xué)習(xí)框架

深度學(xué)習(xí)框架的歷史并不算長,從2010年誕生的Theano算起,至今不過十二年時間。2017年后,早期的Theano、Caffe、Torch等框架逐漸銷聲匿跡,2016年前后出現(xiàn)的TensorFlow、PyTorch、飛槳逐漸占據(jù)市場。


TensorFlow由谷歌人工智能團隊谷歌大腦開發(fā),擁有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在內(nèi)的多個項目以及各類應(yīng)用程序接口。自2015年11月9日起,TensorFlow依據(jù)阿帕奇授權(quán)協(xié)議(Apache 2.0 open source license)開放源代碼。

PyTorch于2017年由Facebook人工智能研究院(FAIR)基于Torch推出,它是一個基于Python的可續(xù)計算包,提供兩個高級功能:1、具有強大的GPU加速的張量計算(如NumPy);2、包含自動求導(dǎo)系統(tǒng)的深度神經(jīng)網(wǎng)絡(luò)。

飛槳(PaddlePaddle)以百度多年的深度學(xué)習(xí)技術(shù)研究和業(yè)務(wù)應(yīng)用為基礎(chǔ),集深度學(xué)習(xí)核心訓(xùn)練和推理框架、基礎(chǔ)模型庫、端到端開發(fā)套件、豐富的工具組件于一體,是中國首個自主研發(fā)、功能完備、開源開放的產(chǎn)業(yè)級深度學(xué)習(xí)平臺。

根據(jù)調(diào)研機構(gòu)IDC公布的一份中國深度學(xué)習(xí)框架平臺市場份額的報告,在中國深度學(xué)習(xí)領(lǐng)域,百度飛槳綜合市場份額已經(jīng)成為中國第一。截至2022年5月,飛槳已經(jīng)凝聚477萬開發(fā)者,創(chuàng)造56萬個AI模型,服務(wù)18萬企事業(yè)單位,與產(chǎn)學(xué)研用協(xié)同培養(yǎng)超過200萬AI人才。

從目前市場占有情況看,產(chǎn)業(yè)界以TensorFlow為主,學(xué)術(shù)界以PyTorch為主。與TensorFlow過于注重工業(yè),PyTorch專注學(xué)界不同,飛槳的特性在于工業(yè)學(xué)界兩手抓,通過動態(tài)圖自動解析編譯靜態(tài)圖的技術(shù),兼顧了學(xué)界的靈活,同時也實現(xiàn)了產(chǎn)業(yè)界希望的高效。

除了TensorFlow、PyTorch、飛槳,深度學(xué)習(xí)框架還包括由Amazon設(shè)計研發(fā)并開源MXNet、微軟在github上開源的CNTK、華為推出的MindSpore、北京一流科技有限公司開發(fā)的OneFlow,以及清華大學(xué)自研Jittor,和騰訊、字節(jié)跳動、360開源的Angel、BytePS、TensorNet。

國產(chǎn)深度學(xué)習(xí)框架框架的挑戰(zhàn)

深度學(xué)習(xí)框架是智能時代的操作系統(tǒng),它和芯片一起共同構(gòu)成了人工智能的基礎(chǔ)設(shè)施,深度學(xué)習(xí)框架的重要性不亞于芯片。在“十四五”規(guī)劃中,深度學(xué)習(xí)框架被列入“新一代人工智能”領(lǐng)域,成為國家重點支持的前沿創(chuàng)新技術(shù)。

如今以百度飛槳為代表,我國深度學(xué)習(xí)平臺已經(jīng)沖破國外技術(shù)壟斷,越來越多的開發(fā)者正基于國產(chǎn)深度學(xué)習(xí)平臺開展智能化轉(zhuǎn)型應(yīng)用。不過,中國自研深度學(xué)習(xí)框架想要在國際競爭中取得領(lǐng)先,還有很長的路要走。

百度AI技術(shù)生態(tài)總經(jīng)理馬艷軍此前在百度AI開放日活動上表示,當(dāng)前中國深度學(xué)習(xí)框架的發(fā)展仍需突破三大關(guān)鍵點:技術(shù)實力、功能體驗、生態(tài)規(guī)模。

首先,技術(shù)創(chuàng)新方面,深度學(xué)習(xí)框架的研發(fā)需要人工智能領(lǐng)域底層技術(shù)人才,我國在這一領(lǐng)域的儲備仍有不足。其次,在應(yīng)用體驗方面,由于中國是全球產(chǎn)業(yè)鏈最為完備的國家,產(chǎn)業(yè)體系復(fù)雜,中小企業(yè)轉(zhuǎn)型需求迫在眉睫,一個低門檻甚至零門檻的開發(fā)平臺極為重要。

在開發(fā)應(yīng)用生態(tài)方面,深度學(xué)習(xí)是一個典型的共創(chuàng)型技術(shù)領(lǐng)域,只有構(gòu)建了自己的生態(tài)才能實現(xiàn)持續(xù)迭代和發(fā)展。然而構(gòu)建生態(tài)周期長、成本高,而且只有當(dāng)國產(chǎn)框架的技術(shù)和功能體驗足以滿足開發(fā)者的需求時,才有機會培育起自主創(chuàng)新的AI開發(fā)應(yīng)用生態(tài)。

日前華為公司中央軟件院架構(gòu)與設(shè)計管理部部長,華為科學(xué)家與昇思MindSpore首席架構(gòu)師金雪鋒在某活動上也談到“AI框架的挑戰(zhàn)”相關(guān)的話題。

他認為,在人工智能新基建時代,AI框架面臨這幾個挑戰(zhàn)和機會點:1、新的應(yīng)用范式:模型復(fù)雜度指數(shù)級增長,大模型成為新生產(chǎn)方式,AI與傳統(tǒng)科學(xué)計算融合,有望催生革命性成果。2、新的計算架構(gòu):計算量指數(shù)增長,通用芯片向領(lǐng)域高效能芯片轉(zhuǎn)變,雙碳經(jīng)濟下,分散低效的算力向集約高效算力演進。3、新的開發(fā)和部署方式:AI行業(yè)應(yīng)用進入深水區(qū),融入生產(chǎn)系統(tǒng)是關(guān)鍵。


面對上述挑戰(zhàn)和機會點,華為昇思MindSpore進行了技術(shù)創(chuàng)新,比如面向新的應(yīng)用范式,包括自動并行,原生大模型支持,即自動并行AI編譯器,通過編譯器進行復(fù)雜的多維混合并行策略的尋優(yōu),把算法和模型自動切分到集群上去執(zhí)行,既大大降低了大模型的開發(fā)門檻,又保證了多種并行策略的靈活組合使用。

總結(jié)

整體而言,在人工智能體系中,深度學(xué)習(xí)框架處于貫通上下的腰部位置,下接芯片、上承應(yīng)用,是一個關(guān)鍵樞紐,是推動AI應(yīng)用大規(guī)模落地的關(guān)鍵力量。因此對于企業(yè)來說,克服深度學(xué)習(xí)框架當(dāng)前面臨的挑戰(zhàn),不斷進行技術(shù)創(chuàng)新,完善技術(shù)、功能和生態(tài)是關(guān)鍵。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 操作系統(tǒng)
    +關(guān)注

    關(guān)注

    37

    文章

    6684

    瀏覽量

    123140
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    29806

    瀏覽量

    268106
  • 推理
    +關(guān)注

    關(guān)注

    0

    文章

    8

    瀏覽量

    7257
收藏 人收藏

    評論

    相關(guān)推薦

    FPGA做深度學(xué)習(xí)能走多遠?

    。 總之,F(xiàn)PGA 在深度學(xué)習(xí)領(lǐng)域具有很大的發(fā)展?jié)摿?b class='flag-5'>機會,但也面臨一些挑戰(zhàn)。隨著技術(shù)的不斷進步和市場的不斷發(fā)展,F(xiàn)PGA 在深度
    發(fā)表于 09-27 20:53

    MCT8316A-設(shè)計挑戰(zhàn)和解決方案應(yīng)用說明

    電子發(fā)燒友網(wǎng)站提供《MCT8316A-設(shè)計挑戰(zhàn)和解決方案應(yīng)用說明.pdf》資料免費下載
    發(fā)表于 09-13 09:52 ?0次下載
    MCT8316A-設(shè)計<b class='flag-5'>挑戰(zhàn)和</b>解決方案應(yīng)用說明

    MCF8316A-設(shè)計挑戰(zhàn)和解決方案應(yīng)用說明

    電子發(fā)燒友網(wǎng)站提供《MCF8316A-設(shè)計挑戰(zhàn)和解決方案應(yīng)用說明.pdf》資料免費下載
    發(fā)表于 09-13 09:51 ?0次下載
    MCF8316A-設(shè)計<b class='flag-5'>挑戰(zhàn)和</b>解決方案應(yīng)用說明

    TMCS110x 布局挑戰(zhàn)和最佳實踐

    電子發(fā)燒友網(wǎng)站提供《TMCS110x 布局挑戰(zhàn)和最佳實踐.pdf》資料免費下載
    發(fā)表于 09-12 09:23 ?0次下載
    TMCS110x 布局<b class='flag-5'>挑戰(zhàn)和</b>最佳實踐

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?499次閱讀

    大模型發(fā)展下,國產(chǎn)GPU的機會挑戰(zhàn)

    電子發(fā)燒友網(wǎng)站提供《大模型發(fā)展下,國產(chǎn)GPU的機會挑戰(zhàn).pdf》資料免費下載
    發(fā)表于 07-18 15:44 ?6次下載
    大模型發(fā)展下,<b class='flag-5'>國產(chǎn)</b>GPU的<b class='flag-5'>機會</b>和<b class='flag-5'>挑戰(zhàn)</b>

    PyTorch深度學(xué)習(xí)開發(fā)環(huán)境搭建指南

    PyTorch作為一種流行的深度學(xué)習(xí)框架,其開發(fā)環(huán)境的搭建對于深度學(xué)習(xí)研究者和開發(fā)者來說至關(guān)重要。在Windows操作系統(tǒng)上搭建PyTorc
    的頭像 發(fā)表于 07-16 18:29 ?699次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源受限的嵌入式平臺上,仍然是一個具有挑戰(zhàn)性的任
    的頭像 發(fā)表于 07-15 10:03 ?1097次閱讀

    深度學(xué)習(xí)常用的Python庫

    深度學(xué)習(xí)常用的Python庫,包括核心庫、可視化工具、深度學(xué)習(xí)框架、自然語言處理庫以及數(shù)據(jù)抓取庫等,并詳細分析它們的功能和優(yōu)勢。
    的頭像 發(fā)表于 07-03 16:04 ?519次閱讀

    TensorFlow與PyTorch深度學(xué)習(xí)框架的比較與選擇

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個重要分支,在過去十年中取得了顯著的進展。在構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型的過程中,深度
    的頭像 發(fā)表于 07-02 14:04 ?846次閱讀

    FPGA在深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈鶪PU

    基礎(chǔ)設(shè)施,人們?nèi)匀粵]有定論。如果 Mipsology 成功完成了研究實驗,許多正受 GPU 折磨的 AI 開發(fā)者將從中受益。 GPU 深度學(xué)習(xí)面臨的挑戰(zhàn) 三維圖形是 GPU 擁有如此大的內(nèi)存和計算能力
    發(fā)表于 03-21 15:19

    汽車網(wǎng)絡(luò)安全-挑戰(zhàn)和實踐指南

    汽車網(wǎng)絡(luò)安全-挑戰(zhàn)和實踐指南
    的頭像 發(fā)表于 02-19 16:37 ?483次閱讀
    汽車網(wǎng)絡(luò)安全-<b class='flag-5'>挑戰(zhàn)和</b>實踐指南

    PatchMatch MVS求解器中深度估計的挑戰(zhàn)性問題

    本文提出了一種全新的學(xué)習(xí)型PatchMatch MVS框架,DS-PMNet,并嵌入了DeformSampler。這個框架能夠以端到端的方式學(xué)習(xí)隱含
    的頭像 發(fā)表于 01-02 09:25 ?502次閱讀
    PatchMatch MVS求解器中<b class='flag-5'>深度</b>估計的<b class='flag-5'>挑戰(zhàn)</b>性問題

    HDI 布線的挑戰(zhàn)和技巧

    HDI 布線的挑戰(zhàn)和技巧
    的頭像 發(fā)表于 12-07 14:48 ?477次閱讀

    DC/DC轉(zhuǎn)換器功率降額規(guī)范中的挑戰(zhàn)和替代方法

    DC/DC轉(zhuǎn)換器功率降額規(guī)范中的挑戰(zhàn)和替代方法
    的頭像 發(fā)表于 11-23 09:08 ?572次閱讀
    DC/DC轉(zhuǎn)換器功率降額規(guī)范中的<b class='flag-5'>挑戰(zhàn)和</b>替代方法