0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ADS2.0算法演進(jìn)與對(duì)算力的新需求

佐思汽車研究 ? 來源:佐思汽車研究 ? 作者:Dr. Luo ? 2022-06-14 11:13 ? 次閱讀

愛因斯坦有曰,“瀚宇初開,萬物當(dāng)生也。萬物可謂振動(dòng),能光旋律之蕩漾焉?!保ㄗⅲ鹤髡咧凶g)。AI新技術(shù)革命時(shí)代,大算力芯片也撥響了自動(dòng)駕駛ADS的琴弦。大珠小珠般的AI算法在大算力驅(qū)動(dòng)下應(yīng)運(yùn)而振,應(yīng)時(shí)而動(dòng),解決了ADS從L2到L5逐級(jí)演進(jìn)中的眾多技術(shù)難題。ADS每增加一級(jí),算力需求也會(huì)呈現(xiàn)十倍速上升,L4級(jí)別可預(yù)計(jì)的算力需求在1000TOPS,L5級(jí)別估計(jì)在2000-10000TOPS。如圖1所示,后摩爾時(shí)代工藝更新性能提升放緩,延續(xù)性創(chuàng)新的邊際效益遞減,新興的大算力架構(gòu)在不斷涌現(xiàn),加上駕駛AI算法高速迭代演進(jìn),在未來5-10年內(nèi)可能會(huì)為后來的技術(shù)追趕者提供非常奇妙的一個(gè)直線超車的機(jī)會(huì)窗口。

8f14599e-eb8f-11ec-ba43-dac502259ad0.png

圖1. 大算力時(shí)代自動(dòng)駕駛ADS領(lǐng)域的機(jī)遇與挑戰(zhàn)

當(dāng)前ADS自動(dòng)駕駛采用決策層后融合的方式,其局限性主要表現(xiàn)在在極端惡劣氣候與復(fù)雜遮擋等不確定性場(chǎng)景下分別進(jìn)行單模結(jié)構(gòu)化信息提取后再進(jìn)行融合決策,每個(gè)通道信息會(huì)有不同層面丟失,很難能夠進(jìn)行多模有效互補(bǔ)與特征提取共享,算力內(nèi)卷且性能遠(yuǎn)低于預(yù)期。 未來ADS算法會(huì)進(jìn)入一個(gè)全新的2.0階段,4D空間下基于時(shí)空的多模感知與融合推理, 也就是特征提取/統(tǒng)計(jì)推斷/應(yīng)急預(yù)測(cè)相結(jié)合,實(shí)現(xiàn)在動(dòng)態(tài)復(fù)雜的有噪聲干擾等場(chǎng)景下,全程安全無碰撞的高效行駛。挑戰(zhàn)可以體現(xiàn)在,動(dòng)態(tài)隨機(jī)的人車物交互,多變天氣路況,以及突發(fā)交通事件等。

ADS算法2.0從決策層后融合走向特征級(jí)前融合,當(dāng)前行業(yè)ADS2.0算法主要演進(jìn)方向?yàn)椋?/p>

多模感知:主要是針對(duì)Camera/LiDAR/Radar海量數(shù)據(jù)流進(jìn)行特征提取,DL網(wǎng)絡(luò)主流趨勢(shì)是卷積CNN或者貝葉斯NN+Transformer的組合架構(gòu),在統(tǒng)一的特征空間實(shí)現(xiàn)多模感知,特征融合共享以及多任務(wù)來提升算力的整體效率。

融合推理:主要是基于模型與基于數(shù)據(jù)的雙學(xué)習(xí)模式,DL網(wǎng)絡(luò)主流趨勢(shì)是基于目標(biāo)交互GNN或基于統(tǒng)計(jì)模型的貝葉斯RL強(qiáng)化學(xué)習(xí)或On-Policy應(yīng)急學(xué)習(xí),實(shí)現(xiàn)ADS安全可信的預(yù)測(cè)規(guī)劃與控制。

ADS2.0算法演進(jìn)與對(duì)算力的新需求,可以總結(jié)為:

演進(jìn)趨勢(shì)1:感知定位預(yù)測(cè)決策控制模塊化處理流程中, 從決策層后融合走向感知層前融合,算法能夠在統(tǒng)一空間支持多模融合,多任務(wù)共享;

演進(jìn)趨勢(shì)2:預(yù)測(cè)與規(guī)劃聯(lián)合建模,從可獲得的Off-policy數(shù)據(jù)進(jìn)行學(xué)習(xí),能夠自學(xué)習(xí)處理不確定性下的安全性問題,解決可解釋問題,持續(xù)學(xué)習(xí)解決新場(chǎng)景問題;

算力新需求:從compute-bound(矩陣-矩陣乘)走向memory-bound(矩陣-矢量乘),從偏計(jì)算走向偏存取。

當(dāng)前市場(chǎng)上主流算力NPU芯片,都存在幾個(gè)共性問題,一是算法效率低,多數(shù)只針對(duì)CNN(例如3x3卷積)優(yōu)化;二是內(nèi)存墻問題:處理單元PE存算分離,數(shù)據(jù)共享難;三是能耗墻問題:數(shù)據(jù)重復(fù)搬移,耗能增加>30-70%。所以,當(dāng)前針對(duì)某些特定算法的芯片,無法解決未來ADS 2.0的需求。

從工程實(shí)踐上看,ADS 2.0算法需通過“硬件預(yù)埋,算法迭代,算力均衡”,提供一個(gè)向前兼容的解決方案,以通用大算力(CPU的5-10倍性能提升,NPU的100-500倍性能提升)來解決未來不確定性的算法演進(jìn):

底層架構(gòu)的演進(jìn):從存算分離過渡到近內(nèi)存計(jì)算,最終走向內(nèi)存計(jì)算;

數(shù)據(jù)通道與模型:高速數(shù)據(jù)接口;數(shù)據(jù)壓縮+模型壓縮+低精度逼近計(jì)算+稀疏計(jì)算加速;

并行的頂層架構(gòu):模型-硬件聯(lián)合設(shè)計(jì),以及硬設(shè)計(jì)可配置+硬件調(diào)度+軟運(yùn)行可編程調(diào)度引擎。

未來,自動(dòng)駕駛算法不會(huì)止步于ADS 2.0,而能夠真正支持人類自動(dòng)駕駛夢(mèng)想的算法ADS 3.0趨勢(shì),我們估計(jì)會(huì)采用一個(gè)DNN網(wǎng)絡(luò)來進(jìn)行端到端學(xué)習(xí)。設(shè)想一下,有足夠的專家駕駛數(shù)據(jù)用來做模仿學(xué)習(xí)或采用RL自學(xué)習(xí)模式,可以有效降低數(shù)據(jù)標(biāo)注的信息瓶頸與嚴(yán)重依賴,從而能夠從多模多樣化數(shù)據(jù)層面進(jìn)行非直接的推理或者博弈類的對(duì)抗學(xué)習(xí)。ADS 3.0目前來看模型的可信與可解釋程度依然遠(yuǎn)低于預(yù)期。ADS系統(tǒng)的總體演進(jìn)趨勢(shì),可以總結(jié)為:

場(chǎng)景演進(jìn):負(fù)載多樣性

?從數(shù)量有限的攝像頭設(shè)置走向 Camera + LiDAR + Radar 多模態(tài)組合。

趨勢(shì)演進(jìn):算法多樣性

?從CNN+Rule-based方案走向CNN, RNN,Transformer, GNN, Bayesian, Deep ReinforcementLearning, Dynamic DNN, NAS Generated DNN, Variably Quantized DNN多算法組合。

大算力時(shí)代,ADS系統(tǒng)首先是模仿人類的駕駛行為,通過注意力機(jī)制,期望在感知定位預(yù)測(cè)規(guī)劃控制領(lǐng)域提供遠(yuǎn)超人類的決策能力。這需要我們?cè)贏I的三要素(算法、算力、數(shù)據(jù))基礎(chǔ)上添加第四要素,知識(shí)或者常識(shí)。

8f88890e-eb8f-11ec-ba43-dac502259ad0.png

而上述要素,均需要在充分理解算法的快速迭代的大趨勢(shì)下,擁有充足的超大通用算力,ADS系統(tǒng)在離線模仿學(xué)習(xí)人類駕駛先驗(yàn)知識(shí)經(jīng)驗(yàn)與規(guī)則的基礎(chǔ)上,能夠提供在線自主學(xué)習(xí)能力,通過自學(xué)習(xí)激勵(lì)與博弈共贏策略應(yīng)對(duì)眾多不確定性的人機(jī)交互的復(fù)雜環(huán)境,能夠?qū)Q策不充分的場(chǎng)景下做到安全應(yīng)對(duì)和提供可信解釋能力。此外,大算力芯片也需要能夠通過額外的算力,對(duì)芯片內(nèi)百萬級(jí)的并行計(jì)算單元提供故障檢測(cè)與安全規(guī)避能力,對(duì)大量多模傳感器的部分或者完全失效進(jìn)行有效檢測(cè)與應(yīng)對(duì)決策處理,對(duì)駕駛環(huán)境針對(duì)傳感器的主動(dòng)攻擊與外界目標(biāo)非主動(dòng)干擾進(jìn)行有效檢測(cè)與實(shí)時(shí)決策處理。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4592

    瀏覽量

    92541
  • ADS1220
    +關(guān)注

    關(guān)注

    24

    文章

    488

    瀏覽量

    125138
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    782

    文章

    13638

    瀏覽量

    166009

原文標(biāo)題:自動(dòng)駕駛行業(yè)快速迭代演變的算法和算力淺論

文章出處:【微信號(hào):zuosiqiche,微信公眾號(hào):佐思汽車研究】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    企業(yè)AI租賃是什么

    企業(yè)AI租賃是指企業(yè)通過互聯(lián)網(wǎng)向?qū)I(yè)的提供商租用所需的計(jì)算資源,以滿足其AI應(yīng)用的需求。以下是對(duì)企業(yè)AI
    的頭像 發(fā)表于 11-14 09:30 ?61次閱讀

    GPU開發(fā)平臺(tái)是什么

    隨著AI技術(shù)的廣泛應(yīng)用,需求呈現(xiàn)出爆發(fā)式增長。AI租賃作為一種新興的服務(wù)模式,正逐漸成為企業(yè)獲取
    的頭像 發(fā)表于 10-31 10:31 ?104次閱讀

    大模型時(shí)代的需求

    現(xiàn)在AI已進(jìn)入大模型時(shí)代,各企業(yè)都爭(zhēng)相部署大模型,但如何保證大模型的,以及相關(guān)的穩(wěn)定性和性能,是一個(gè)極為重要的問題,帶著這個(gè)極為重要的問題,我需要在此書中找到答案。
    發(fā)表于 08-20 09:04

    摩爾線程張建中:以國產(chǎn)助力數(shù)智世界,滿足大模型需求

    摩爾線程創(chuàng)始人兼CEO張建中在會(huì)上透露,為了滿足國內(nèi)對(duì)AI的迫切需求,他們正在積極尋求與國內(nèi)頂尖科研機(jī)構(gòu)的深度合作,共同推動(dòng)更大規(guī)模的AI智集群項(xiàng)目。
    的頭像 發(fā)表于 05-10 16:36 ?858次閱讀

    力系列基礎(chǔ)篇——101:從零開始了解

    相信大家已經(jīng)感受到,我們正處在一個(gè)人工智能時(shí)代。如果要問在人工智能時(shí)代最重要的是什么?那必須是:!!
    的頭像 發(fā)表于 04-24 08:05 ?1002次閱讀
    <b class='flag-5'>算</b>力系列基礎(chǔ)篇——<b class='flag-5'>算</b><b class='flag-5'>力</b>101:從零開始了解<b class='flag-5'>算</b><b class='flag-5'>力</b>

    液冷是大模型對(duì)需求的必然選擇?|英偉達(dá) GTC 2024六大亮點(diǎn)

    在這個(gè)以高性能計(jì)算和大模型推動(dòng)未來通用人工智能時(shí)代,已成為科技發(fā)展的隱形支柱。本文將重點(diǎn)探討演進(jìn),深入分析在不同領(lǐng)域中
    的頭像 發(fā)表于 04-10 12:57 ?480次閱讀
    液冷是大模型對(duì)<b class='flag-5'>算</b><b class='flag-5'>力</b><b class='flag-5'>需求</b>的必然選擇?|英偉達(dá) GTC 2024六大亮點(diǎn)

    簡(jiǎn)史,是一段波瀾壯闊的歷史

    今天這篇文章,我將給大家詳細(xì)介紹一下人類演進(jìn)過程。這是一段波瀾壯闊的歷史,值得我們駐足與回憶。Chrent人工時(shí)代人類對(duì)
    的頭像 發(fā)表于 04-04 08:26 ?605次閱讀
    <b class='flag-5'>算</b><b class='flag-5'>力</b>簡(jiǎn)史,是一段波瀾壯闊的歷史

    Sora爆火引全球需求激增?賽思時(shí)間同步技術(shù)使如虎添翼!

    近日,聯(lián)想集團(tuán)楊元慶表示,Sora的推出會(huì)加大全球AI需求,會(huì)進(jìn)一步帶動(dòng)AI的普及和平民化應(yīng)用。從供給側(cè)來看,這一方面會(huì)提高對(duì)傳統(tǒng)性能的要求,另一方面也需要進(jìn)行新的技術(shù)創(chuàng)新。賽思時(shí)頻創(chuàng)新技術(shù)使
    的頭像 發(fā)表于 03-01 10:36 ?422次閱讀
    Sora爆火引全球<b class='flag-5'>算</b><b class='flag-5'>力</b><b class='flag-5'>需求</b>激增?賽思時(shí)間同步技術(shù)使<b class='flag-5'>算</b><b class='flag-5'>力</b>如虎添翼!

    數(shù)據(jù)語料庫、算法框架和芯片在AI大模型中的作用和影響

    數(shù)據(jù)語料庫、算法框架和芯片的確是影響AI大模型發(fā)展的三大重要因素。
    的頭像 發(fā)表于 03-01 09:42 ?941次閱讀

    Sora需求引發(fā)業(yè)界對(duì)集結(jié)國內(nèi)AI企業(yè)的探討

    據(jù)周鴻祎觀察,Sora視頻分析所需恐遠(yuǎn)超千億規(guī)模模型。因而,考慮到如今國內(nèi)芯片供應(yīng)受限,問題至關(guān)重要。事實(shí)上,Meta已有約50萬臺(tái) GPU,明年預(yù)計(jì)追加至100萬臺(tái);微軟亦有
    的頭像 發(fā)表于 02-25 10:03 ?525次閱讀

    智能規(guī)模超通用,大模型對(duì)智能提出高要求

    的縮寫,即每秒所能夠進(jìn)行的浮點(diǎn)運(yùn)算數(shù)目(每秒浮點(diǎn)運(yùn)算量)。 ? 可以分為通用、智能
    的頭像 發(fā)表于 02-06 00:08 ?5996次閱讀

    大茉莉X16-P,5800M大稱王稱霸

    Rykj365
    發(fā)布于 :2024年01月25日 14:54:52

    網(wǎng)絡(luò)面臨三大挑戰(zhàn)

    2024年,以AIGC為代表的人工智能技術(shù)將進(jìn)一步激發(fā)需求網(wǎng)絡(luò)、智中心、超
    的頭像 發(fā)表于 01-12 10:39 ?996次閱讀

    什么是?可分為哪些類別?

    計(jì)算是人類解決問題的一種方式。 在漫長的歷史長河中,人類遇到過很多問題,都需要通過計(jì)算來解決。這些計(jì)算任務(wù),僅憑大腦這個(gè)“原生”工具,是無法完成的。 于是,人類發(fā)明了很多
    的頭像 發(fā)表于 11-20 09:27 ?1.3w次閱讀
    什么是<b class='flag-5'>算</b><b class='flag-5'>力</b>?<b class='flag-5'>算</b><b class='flag-5'>力</b>可分為哪些<b class='flag-5'>算</b><b class='flag-5'>力</b>類別?

    到底什么是的作用?

    的字面意思,大家都懂,就是計(jì)算能力(Computing Power)。
    的頭像 發(fā)表于 11-20 09:26 ?1768次閱讀
    到底什么是<b class='flag-5'>算</b><b class='flag-5'>力</b>?<b class='flag-5'>算</b><b class='flag-5'>力</b>的作用?