光纖通信的發(fā)展對我國的經(jīng)濟(jì)建設(shè)起到重要的作用。光纖通訊具有無法比擬的優(yōu)勢:傳輸頻寬帶、損失消耗較少。光纖通信的建設(shè)起始于二十世紀(jì)九十年代,并且得到大規(guī)模的發(fā)展。
光纖通信作為承載著很大信息量的傳輸網(wǎng)絡(luò),具有一定的風(fēng)險和不穩(wěn)定性,為了保證光纖通信的順利運行和安全,需要開發(fā)一種能精確測量出光纖通信特性的工具或者是儀器。光頻域反射能夠準(zhǔn)確的檢測出光纖通信特性,光頻域反射主要是分析光纖的散射光時間差、光程差來檢測光纖通訊的。
OFDR光頻域反射技術(shù)的原理介紹
1、光纖中的散射
當(dāng)光通過不均勻介質(zhì)時會向四面八方傳播,這就是光的散射,例如晴朗的天空呈現(xiàn)藍(lán)色,海水也是藍(lán)的,這都是太陽光發(fā)生散射的結(jié)果(波長較短的藍(lán)光被大氣微粒散射)。同樣的,當(dāng)光在光纖中傳輸時,由于光纖中折射率分布不均勻,也會發(fā)生散射,主要有瑞利散射,布里淵散射與拉曼散射三種形式。
散射是光波與光纖介質(zhì)的粒子相互作用的結(jié)果。瑞利散射中,入射光被散射后,波長、頻率并未發(fā)生變化,是一種彈性散射;布里淵散射中入射光與光纖中聲波場發(fā)生作用,會出現(xiàn)高于原入射光頻率的光和低于原入射光頻率的光。拉曼散射產(chǎn)生的結(jié)果與之類似,兩者都屬于非彈性散射。
分布式光纖傳感技術(shù)(DOFS)就是通過采集光纖中散射光的信息進(jìn)行測量的,可以分成如下幾類:
目前, OTDR 技術(shù)發(fā)展成熟,多用于集成光路的診斷和光通信網(wǎng)絡(luò)故障的檢測,但受探測光脈沖寬度及空間分辨率與動態(tài)范圍之間矛盾的限制,難以同時滿足較大動態(tài)范圍和較高空間分辨率,不適用于高精度測量領(lǐng)域。在溫度與應(yīng)變傳感領(lǐng)域,多使用基于布里淵散射的 BOTDR、BOTDA 及 BOFDA 技術(shù),其中 BOFDA技術(shù)最高能實現(xiàn) 2cm 的空間分辨率,但整個測試系統(tǒng)十分復(fù)雜,測量時間較長。
OFDR 技術(shù)是利用掃頻光源相干檢測技術(shù)對光纖中的光信號進(jìn)行檢測的一項技術(shù),由于不受空間分辨率與動態(tài)范圍之間矛盾的限制,其同時具備空間分辨率高(光學(xué)測量可達(dá) 10μm) , 動態(tài)范圍大, 測試靈敏度高等特點, 適用于短距離高精度監(jiān)測領(lǐng)域如光器件內(nèi)部剖析、土木工程模擬試驗、車輛結(jié)構(gòu)研究等。
2、光學(xué)相干檢測
光學(xué)相干檢測的基本原理和無線電波外差探測原理基本一致,故又稱光外差檢測。它是利用光的相干性將包含有被測信號的探測光和作為基準(zhǔn)的參考光在滿足一定條件下進(jìn)行混頻,輸出兩光波的差頻信號的一種檢測技術(shù),其基本原理如下圖:
相干檢測是一種間接檢測技術(shù),它把高頻光信號轉(zhuǎn)換到易于檢測的中頻信號上,具有轉(zhuǎn)換增益高、檢測能力強、信噪比高等優(yōu)點,在光通信、測量領(lǐng)域有廣泛的應(yīng)用。
3、 OFDR(光頻域反射技術(shù)) 原理
OFDR(光頻域反射技術(shù))是一種基于光纖中瑞利散射的背向反射技術(shù),光源發(fā)出的線性掃頻光經(jīng)耦合器分為兩路,一路進(jìn)入待測光纖中,在光纖各個位置上不斷地產(chǎn)生瑞利散射信號,信號光是背向的,與另一路參考光耦合到探測器上進(jìn)行相干混頻。待測光纖不同位置,光頻率不同,信號光與參考光的頻差也不同。
通過頻率測量可以獲得待測光纖中各位置的光強。頻率對應(yīng)于光纖的位置,光強對應(yīng)于此位置的反射率和回?fù)p。
光在光纖中向前傳輸時,當(dāng)光纖中出現(xiàn)缺陷產(chǎn)生損耗時,不同位置處產(chǎn)生的瑞利散射信號便攜帶了這些損耗信息。對瑞利散射信號光進(jìn)行頻率檢測,就能準(zhǔn)確定位光纖沿線出現(xiàn)的熔接點、彎曲、斷點等。OFDR 技術(shù)就是通過上述原理實現(xiàn)光纖鏈路的診斷。
另一方面,當(dāng)待測光纖置于外界的溫度場或應(yīng)變場中,光纖受溫度或應(yīng)變影響,光纖內(nèi)部折射率分布會有變化,相應(yīng)的瑞利散射信號光的頻率也會有變化,通過瑞利散射信號光的頻率測量,可以對應(yīng)外界溫度場或應(yīng)變場的變化。從而實現(xiàn)分布式光纖傳感。
OFDR的發(fā)展現(xiàn)狀
OFDR主要有三種應(yīng)用:光通信網(wǎng)絡(luò)診斷、集成光路診斷和層析技術(shù)。這些應(yīng)用的差別在于它們對OFDR系統(tǒng)的要求不同。而其技術(shù)差別主要在于光源部分的調(diào)制方式不同。
在層析技術(shù)中應(yīng)用時,要求測量量程為幾個毫米,測量精度為幾十個微米。
為尋求OFDR系統(tǒng)的商業(yè)化,國外許多研究單位對采用半導(dǎo)體激光器作為光源的OFDR系統(tǒng)進(jìn)行了研究和探討。他們嘗試用各種方法對半導(dǎo)體激光器光源進(jìn)行頻域調(diào)制,以達(dá)到OFDR系統(tǒng)的要求,比如采用電流注入法、溫度調(diào)制法、腔外光柵調(diào)制法或者腔外電光相位調(diào)制法等。
集成光路診斷需要比層析技術(shù)更大的測量量程。專家用磷化銦光波導(dǎo)結(jié)構(gòu)得到了分辨率為50μm、測量范圍為25mm的OFDR系統(tǒng)。
當(dāng)調(diào)制光源時,注入電流的變化、殘余振幅調(diào)制和非線性頻率調(diào)啾會使系統(tǒng)的分辨率變差。用頻率均衡器可以使頻率惆啾線性化,優(yōu)化系統(tǒng)的分辨率,使系統(tǒng)的分辨率達(dá)到1mm,并使測量量程達(dá)到1m。
光通信網(wǎng)絡(luò)的診斷需要使用波長為1.3μm或1.55μm的光源,OFDR系統(tǒng)的測量量程必須大很多。用波長為1.32μm的ND: YAG激光器作為光源,得到了較長的相干長度,使測量范圍達(dá)到了50km,實驗中的分辨率達(dá)到了380m。用波長為1.55cm的Er-Yb激光器作為光源,并使用了摻Er光纖放大器,得到了50m的分辨率,測量量程則達(dá)到了30km。隨著光源調(diào)頻技術(shù)的日益成熟, OFDR的分辨率得到了很大的提高。運用SSB調(diào)制技術(shù)在量程大于5km時成功地得到cm量級的分辨率。
光頻域反射計優(yōu)點
在光通信網(wǎng)絡(luò)檢測中包括了集成光路的診斷和光通信網(wǎng)絡(luò)故障的檢測等。前者一般只有厘米量級甚至毫米量級,后者的診斷一般使用波長為1.3μm或 1.55μm的光源,量程則達(dá)到了公里級,大的量程就需要大的動態(tài)范圍和高的光源光功率。顯然。OTDR分辨率與動態(tài)范圍之間的矛盾不能很好地解決這個問題,而OFDR卻可以滿足.它具有高靈敏度和高的空間分辨率優(yōu)點。
1、高的靈敏度
由于參考光的光功率比較大,一般能達(dá)到幾十毫瓦。而光纖的背向瑞利散射光信號的功率很小。大約只是入射光的--45dB,從而可以得出結(jié)論。OFDR探測方式的靈敏度要遠(yuǎn)高于OTDR的探測方式。也就是說,在相同動態(tài)范圍的條件下,OFDR需要的光源光功率要小得多。
2、高的空間分辨率
空間分辨率是指測量系統(tǒng)能辨別待測光纖上兩個相鄰測量點的能力??臻g分辨率高意味著能辨別的測量點間距短,即光纖上能測量的信息點就多,更能反映整條待測光纖的特性。在OTDR系統(tǒng)中分辨率受探測光脈沖寬度的限制,探測光脈沖寬度窄,則分辨率高,同時光脈沖能量變小,信噪比減小。
OFDR系統(tǒng)中的空間分辨率可以對應(yīng)為辨別待測光纖兩個相鄰測量點所對應(yīng)的中頻信號的能力,而辨別中頻信號的能力與系統(tǒng)中所使用的頻譜儀的接收機帶寬密切相關(guān)。很明顯,接收機帶寬越小,則辨別兩個不同頻率信號的能力越強,同時引入的噪聲電平也小,信噪比提高,故OFDR系統(tǒng)在得到高空間分辨率的同時也能得到很大的動態(tài)范圍。
OFDR的限制因素與發(fā)展現(xiàn)狀
1、光源相位噪聲和相干性的限制
以上分析都是假定光源是單色的,而實際上的信號源都會產(chǎn)生較大的相位噪聲并通過有限的頻譜寬度表現(xiàn)出來。該相位噪聲會減小空間分辨率并縮短光纖能夠可靠測量的長度即光纖在一定長度之后測量到的數(shù)據(jù)就不能準(zhǔn)確反映出散射信號的大小,從而不能準(zhǔn)確分析光纖的傳輸特性。
2、光源掃頻非線性的限制
實際使用的激光器由于受到溫度變化、器件的振動、電網(wǎng)電壓的波動等條件的影響,會引起光源諧振腔位置的變化從而影響輸出光波譜線的變化,引起掃頻的非線性,會展寬OFDR測量系統(tǒng)中差頻信號的范圍,這限制了OFDR方式的空間分辨率的大小。
3、光波的極化限制
由于OFDR方式采用的是相干檢測方案,很明顯,假如信號光和參考光在光電探測器的光敏面上的極化方向是正交的,則該信號光所對應(yīng)的光纖測量點的信息就會丟失。因此,必須保證光波極化的穩(wěn)定性
光頻域反射儀(OFDR)在軍事裝備中的應(yīng)用
1、海上軍事裝備的應(yīng)用
美國海軍在80年代初就實施了開發(fā)大型新艦船用光纖區(qū)域網(wǎng)作為計算機數(shù)據(jù)總線的計劃(AEGIS(宇斯盾)計劃),他們意識到了將艦艇中的同軸電纜更換為光纜的巨大價值。1986年初,美國海軍海洋系統(tǒng)司令部又在此基礎(chǔ)上成立了SAFENET(能抗毀的自適應(yīng)光纖嵌入網(wǎng))委員會。并于1987年成立工作組指導(dǎo)制定了SAFENET-I和SAFENE-II兩套標(biāo)準(zhǔn)并開發(fā)出了相應(yīng)系統(tǒng)。這些系統(tǒng)已安裝在CG 47 級導(dǎo)彈巡洋艦、DDG 51級導(dǎo)彈驅(qū)逐艦、“喬治·華盛頓號”航空母艦等艦艇上。隨后實施的高速光網(wǎng)(HSON)原型計劃,在實現(xiàn)了1.7Gb/S的第一階段目標(biāo)后,美國“小石城號”軍艦上的雷達(dá)數(shù)據(jù)總線傳輸容量就達(dá)到了1Gb/S,并使原來重量達(dá)90噸的同軸電纜被0.5噸重的單模光纜所代替。1997年11月,美國在核動力航空母艦“杜魯門號”(CVN75)上采用氣送光纖技術(shù)完成了光纖敷設(shè)。后來又成功地在“企業(yè)號”(CVN 65)上進(jìn)行了敷設(shè)。還計劃在“里根號”(CVN 76)、“尼米茲號”(CVN68)及“USSWasp”號(LHD-1)上用氣送光纖技術(shù)敷設(shè)光纖系統(tǒng)。其中“杜魯門號”上所用光纖達(dá)67.58kM。
在上述艦載高速光纖網(wǎng)、采用光纖制導(dǎo)的武器彈藥或使用光纖傳輸信息的局部裝置中,存在著大量的光纖連接頭或光纖彎曲等現(xiàn)象,網(wǎng)絡(luò)鏈路結(jié)構(gòu)復(fù)雜、光器件數(shù)目多;網(wǎng)絡(luò)工作環(huán)境惡劣、溫度變化大、振動沖擊嚴(yán)重;對這類網(wǎng)絡(luò)的可靠性檢測事關(guān)國家安全,需要在維護(hù)檢修時具備很高的故障分辨率并能定位到器件內(nèi)部。OTDR技術(shù)顯然不能滿足上述要求,而OFDR則具備滿足這一應(yīng)用需求的能力。OFDR可以有效的檢測出鏈路內(nèi)各個光器件的反射及損耗特性,OTDR則因距離分辨率低而難以有效檢測該鏈路中光器件的狀況。表明OFDR能夠有效地高精度檢測中短距離專用光纖網(wǎng)絡(luò)中光纖和器件的故障。
2、航空航天裝備的應(yīng)用
載人航天、大型飛機作為國家科技實力的標(biāo)志,得到迅速發(fā)展,我國也將之列入中長期科技發(fā)展規(guī)劃重大專項和重大科學(xué)工程。大型飛機、載人航天的發(fā)展,必然對其內(nèi)部通信網(wǎng)絡(luò)的傳輸容量、抗干擾能力以及體積重量等提出新的要求,光纖以其傳輸帶寬、抗電磁干擾能力、以及質(zhì)量輕、體積小、抗腐蝕、無火災(zāi)隱患等獨特優(yōu)越性,使其成為支持該發(fā)展需求的最佳技術(shù)選擇。美國自1995年波音777首次成功使用光纖局域網(wǎng)(LAN)技術(shù)之后,就提出了"航空電子光纖統(tǒng)一網(wǎng)絡(luò)"的概念,掀起了航空電子光纖網(wǎng)絡(luò)技術(shù)研究的熱潮。構(gòu)建基于光纖技術(shù)的內(nèi)部通信網(wǎng)絡(luò),成為這類專用通信網(wǎng)絡(luò)的發(fā)展趨勢,也為光纖通信技術(shù)開辟了新型的應(yīng)用領(lǐng)域。然而,這類網(wǎng)絡(luò)的可靠性檢測是一個沒能很好解決的問題。這類網(wǎng)絡(luò)往往事關(guān)人的生命乃至國家安全,對網(wǎng)絡(luò)的可靠性和安全性要求極高,必須進(jìn)行嚴(yán)格細(xì)致的檢測。
網(wǎng)絡(luò)的鏈路距離短(幾十米至數(shù)公里),結(jié)構(gòu)復(fù)雜、光器件數(shù)目多,要求故障精確定位到器件的內(nèi)部。因此,需要定位精度能夠達(dá)到毫米量級、距離范圍能到數(shù)公里的光纖鏈路檢測設(shè)備,光時域反射技術(shù)(OTDR)顯然不能滿足上述測量要求,而OFDR則具備滿足這一應(yīng)用需求的能力。
目前國內(nèi)軍機的通信系統(tǒng)普遍采用了“1+N+1”的模式,“1”表示交換機機箱內(nèi)的多模光纖長度,“N”表示兩個機箱之間的光纜長度。
3、陸地軍事裝備的應(yīng)用
在陸上的軍事通信應(yīng)用中的戰(zhàn)略和戰(zhàn)術(shù)通信的遠(yuǎn)程系統(tǒng)、基地間通信的局域網(wǎng)等因為光纜通信距離較長,不需要用到高分辨率的OFDR。
由于光纖傳輸損耗低、頻帶寬等固有的優(yōu)點,光纖在雷達(dá)系統(tǒng)的應(yīng)用首先用于連接雷達(dá)天線和雷達(dá)控制中心,從而可使兩者的距離從原來用同軸電纜時的300m以內(nèi)擴大到2~5km。用光纖作傳輸媒體,其頻帶可覆蓋X波段(8~12.4GHz)或Ku波段(12.4~18GHZ)。光纖在微波信號處理方面的應(yīng)用主要是光纖延遲線信號處理。先進(jìn)的高分辨率雷達(dá)要求損耗低、時間帶寬積大的延遲器件進(jìn)行信號處理。傳統(tǒng)的同軸延遲線、聲表面波(SAW)延遲線、電荷耦合器件(CCD)等均已不能滿足要求。光纖延遲線不僅能達(dá)到上述要求,而且能封裝進(jìn)一個小型的封裝盒。用于相控陣?yán)走_(dá)信號處理的大多是多模光纖構(gòu)成的延遲線。
在上述的中短距離的應(yīng)用中,特別是封裝在小盒里的光纖延遲線,維護(hù)時只有使用高分辨率的OFDR才能檢測出是否有潛在故障。
光通信、層析技術(shù)和集成光學(xué)的發(fā)展,越來越需要具有高空間分辨率的測量技術(shù)。OFDR作為一種具有廣泛應(yīng)用前景的高空間分辨率測量技術(shù),正越來越受到研究者的重視。隨著國內(nèi)科學(xué)技術(shù)的發(fā)展,有關(guān)OFDR的研究必將會廣泛地被引起人們的重視并得以開展。
光纖通信的發(fā)展對我國的經(jīng)濟(jì)建設(shè)起到重要的作用。光纖通訊具有無法比擬的優(yōu)勢:傳輸頻寬帶、損失消耗較少。光纖通信的建設(shè)起始于二十世紀(jì)九十年代,并且得到大規(guī)模的發(fā)展。
光纖通信作為承載著很大信息量的傳輸網(wǎng)絡(luò),具有一定的風(fēng)險和不穩(wěn)定性,為了保證光纖通信的順利運行和安全,需要開發(fā)一種能精確測量出光纖通信特性的工具或者是儀器。光頻域反射能夠準(zhǔn)確的檢測出光纖通信特性,光頻域反射主要是分析光纖的散射光時間差、光程差來檢測光纖通訊的。
審核編輯 :李倩
-
光纖通信
+關(guān)注
關(guān)注
20文章
481瀏覽量
44650 -
傳感技術(shù)
+關(guān)注
關(guān)注
4文章
528瀏覽量
46246 -
反射技術(shù)
+關(guān)注
關(guān)注
0文章
5瀏覽量
5968
原文標(biāo)題:光纖通信的OFDR光頻域反射技術(shù)應(yīng)用
文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論