0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

終端區(qū)域?qū)﹂_關(guān)損耗的物理分析

楊杰 ? 來源:dsdfshf ? 作者:dsdfshf ? 2022-07-29 10:24 ? 次閱讀

盡管硅是電子產(chǎn)品中使用最廣泛的半導(dǎo)體,但最近的研究表明它有一些局限性,特別是在高功率應(yīng)用中。帶隙是基于半導(dǎo)體的電路的一個相關(guān)因素,因為高帶隙在高溫、電壓和頻率下的操作方面具有優(yōu)勢。雖然硅的帶隙為 1.12 eV,但碳化硅的帶隙值是 3.2 eV 的 3 倍,從而在更高的開關(guān)頻率以及更小的整體占位面積下實現(xiàn)更好的性能和效率。

SiC MOSFET具有顯著的特性和單極傳導(dǎo)機制,可減小尺寸并提高開關(guān)性能。此外,當(dāng)具有相同的電流和電壓額定值時,SIC MOSFET 的尺寸可以比 Si 對應(yīng)物更小,正如 Huang 的品質(zhì)因數(shù)1中所推測的那樣。由于尺寸更小,整體寄生電容更小,這使得 SiC MOSFET 能夠?qū)崿F(xiàn)高開關(guān)速度和低導(dǎo)通電阻。因此,基于 SiC 的轉(zhuǎn)換器在混合動力/電動汽車、太陽能逆變器和不間斷電源中具有巨大的應(yīng)用潛力。

先前的研究表明,SiC 芯片尺寸的顯著減小僅考慮有源區(qū)域。由于位于有源區(qū)邊界的邊緣電場,封閉有源區(qū)并有助于成功實現(xiàn)近乎理想的雪崩擊穿的終止區(qū)不能按比例縮放。一組研究人員開展了分析從端接區(qū)域引入的寄生電容以及它如何影響 SiC MOSFET 的開關(guān)損耗的工作。2該研究得到了國家自然科學(xué)基金的部分支持,部分得到了寬帶隙半導(dǎo)體電力電子器件國家重點實驗室的支持。

分析終端區(qū)域中的 SiC MOSFET

在題為“端接區(qū)域?qū)?SiC MOSFET 的開關(guān)損耗的影響”的論文中,研究人員分析了端接區(qū)域?qū)纳娙莸挠绊?。簡單來說,寄生電容是電子元件或電路的各部分之間由于彼此接近而存在的一種不可避免但不受歡迎的電容。

pYYBAGLigMmAYTX-AAIrGBaBrDw678.png

圖 1:半電池節(jié)距和端接區(qū)域的橫截面圖

輸入電容、輸出電容和反向傳輸電容都取決于 SiC MOSFET 的所有三個端子之間的電容。由于柵極總線和源極之間存在物理重疊,因此柵極下方的氧化層比柵極氧化層厚。由于柵極和漏極以及柵極和源極端之間沒有重疊,它們對總電容的貢獻(xiàn)很小。因此,漏源端電容由有源區(qū)和終端區(qū)的等效電容組成。

該團(tuán)隊使用 TCAD Sentaurus 演示了 SiC MOSFET 開啟和關(guān)閉事件期間寄生電容的工作原理。TCAD Sentaurus 是一種先進(jìn)的多維模擬器,能夠模擬硅基器件的電學(xué)、熱學(xué)和光學(xué)特性,用于開發(fā)和優(yōu)化半導(dǎo)體工藝技術(shù)。器件兩端的電壓 (V ds ) 和流經(jīng)器件的電流 (I ds ) 重疊會導(dǎo)致開關(guān)損耗。為了說明 SiC MOSFET 內(nèi)部的開關(guān)過程,通道電流 (I ch ) 通過柵極通道引入。

poYBAGLigNeAMvdJAABD2dlX8dM411.jpg

圖 2:考慮端接區(qū)域的寄生電容電路圖

在導(dǎo)通過程的米勒間隔期間,柵漏電容 (C gd ) 和有源區(qū)電容 (C acti ) 由于來自終端引入的電容的放電電流 (I term ) 的電阻流動而放電區(qū)(C term)通過位于有源區(qū)的柵極溝道。在此區(qū)間內(nèi)流過柵極溝道的耗散電流或溝道電流 (I ch ) 是流過終端區(qū)的電流 (I term ) 與有源區(qū)電容 (I acti ) 和漏極的放電電流的組合源電流 (I ds )。

而對于關(guān)斷過程的米勒間隔,一部分漏源電流 (I ds ) 開始對引入到有源區(qū)和終端區(qū)的電容 (C acti和 C term ) 充電,而不是流過柵極溝道),如下圖所示。這里,耗散溝道電流 (I ch ) 不包括 C term和 C acti的電流(即I ch = I ds – I acti – I term)。

pYYBAGLigOGAC1O_AAEk-3H3Bhg214.png

圖 3:開啟(上)和關(guān)斷(下)工藝的米勒平臺選擇期間 SiC MOSFET 端接區(qū)域的示意圖和等效電路

SiC MOSFET 的開關(guān)損耗建模

在終端區(qū)域的物理分析過程中,流過 SiC MOSFET 柵極溝道的溝道電流 (I ch ) 是展示開關(guān)損耗但不可測量的漏源電流 (I ds ) 的基本電流。因此,考慮終端區(qū)域的開啟和關(guān)閉損耗表達(dá)式為:

pYYBAGLigOyAJoNSAAAS943D9JQ477.png

poYBAGLigPaAStwWAAASyfrgY9A266.png

將上述關(guān)斷和開通損耗公式組合后,定義如下公式:

pYYBAGLigQCAfYx3AAAHAufpAjo381.png

pYYBAGLigQuAW1PuAAAG43Eq99M611.png

poYBAGLigReAb1VBAAATnfLyKEY050.png

pYYBAGLigSGALFDRAAAODKo-kM0875.png

等式 3 和 4 表示在開啟和關(guān)閉米勒過程期間可測量 I ds的開關(guān)損耗貢獻(xiàn)。等式 5 和 6 描述了 C acti和 C term的充電和放電。對于給定的器件,存儲在有源區(qū)和終端區(qū)的寄生電容中的能量固定在相同的阻斷電壓下,但與 I ds無關(guān)。

結(jié)果

pYYBAGLigS6AOjGcAABThXKnUZI348.png

圖 4:SiC MOSFET 分離的開關(guān)電路

如圖 4 所示,建立了一個雙脈沖測試,其中 SiC MOSFET 在有源區(qū)和終端區(qū)分開,以檢查開關(guān)損耗的組成。SiC MOSFET 的額定電流為 1、3 和 6 A,定義為V ds = 3 V 和V gs = 20 V。使用 TCAD Sentaurus 仿真,計算的開關(guān)損耗擊穿為 1-、3-、下圖顯示了 800、1,000 和 1,200 V 以下的 6-A SiC MOSFET。

pYYBAGLigTqAQ-93AADIuWNkbNQ901.png

圖 5:不同 MOSFET 的開關(guān)損耗細(xì)分

開關(guān)損耗分為 E ON (I ds )、E acti、E term和 E OFF (I ch )。E ON (I ds )、E acti和 E term的值是可比較的,而 E OFF (I ch ) 在各種阻斷電壓和電流額定值下變得非常低。隨著用于更高額定電流的有源區(qū)面積的增加,E acti增加了總開關(guān)損耗的比例。如果使用相對較弱的柵極驅(qū)動器,則 E ON (I ds ) 和 E OFF (Ich ) 會更大。另一方面,對于特定的 MOSFET ,E acti和 E term是固定的。對于 SiC MOSFET 的 E OFF,很少有電流流過柵極溝道,產(chǎn)生很少的焦耳熱,但幾乎所有電流都將 C acti和 C項充電為位移電流。這導(dǎo)致較低的 E OFF (I ch ) 值??梢员硎救缦拢?/p>

poYBAGLigUeAZsShAAAIMKELWCY852.png

其中 I g(OFF)是關(guān)斷過程中柵極回路的放電電流,表明關(guān)斷持續(xù)時間比 C acti和 C term快得多。

結(jié)論

使用 TCAD Sentaurus 和考慮了端接區(qū)域影響的開關(guān)損耗模型模擬了對 SiC MOSFET 端接區(qū)域的物理洞察。經(jīng)證實,終端區(qū)域?qū)﹂_關(guān)損耗的影響不容忽視,尤其是對于低電流額定值的 SiC MOSFET。開通損耗的重要部分之一是 E term和 E acti,這是一種固有損耗,甚至高于常用的電測量估計。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    142

    文章

    6936

    瀏覽量

    211748
  • 開關(guān)損耗
    +關(guān)注

    關(guān)注

    1

    文章

    63

    瀏覽量

    13455
收藏 人收藏

    評論

    相關(guān)推薦

    PFC MOSFET的開關(guān)損耗測試方案

    MOSFET/IGBT的開關(guān)損耗測試是電源調(diào)試中非常關(guān)鍵的環(huán)節(jié),但很多工程師對開關(guān)損耗的測量還停留在人工計算的感性認(rèn)知上,PFC MOSFET的開關(guān)損耗更是只能依據(jù)口口相傳的經(jīng)驗反復(fù)摸索,那么該如何量化評估呢?
    發(fā)表于 10-19 10:39 ?1897次閱讀

    使用Cauer網(wǎng)絡(luò)仿真熱行為與對開關(guān)損耗影響的評估

    擴展建模技術(shù),安森美(onsemi)使仿真精度進(jìn)一步提升到更高的水平,此前我們?yōu)榇蠹医榻B了物理和可擴展仿真模型功能的相關(guān)內(nèi)容,本文將繼續(xù)為大家介紹使用 Cauer 網(wǎng)絡(luò)仿真熱行為以及評估各項因素對開關(guān)損耗的影響。
    的頭像 發(fā)表于 12-29 16:02 ?1388次閱讀
    使用Cauer網(wǎng)絡(luò)仿真熱行為與<b class='flag-5'>對開關(guān)損耗</b>影響的評估

    功率MOSFET的開關(guān)損耗:關(guān)斷損耗

    大于B管,因此選取的MOSFET開關(guān)損耗占較大比例時,需要優(yōu)先考慮米勒電容Crss的值。整體開關(guān)損耗為開通及關(guān)斷的開關(guān)損耗之和:從上面的分析可以得到以下結(jié)論:(1)減小驅(qū)動電阻可以減小
    發(fā)表于 03-06 15:19

    全SiC功率模塊的開關(guān)損耗

    全SiC功率模塊與現(xiàn)有的功率模塊相比具有SiC與生俱來的優(yōu)異性能。本文將對開關(guān)損耗進(jìn)行介紹,開關(guān)損耗也可以說是傳統(tǒng)功率模塊所要解決的重大課題。全SiC功率模塊的開關(guān)損耗全SiC功率模塊與現(xiàn)有
    發(fā)表于 11-27 16:37

    【干貨】MOSFET開關(guān)損耗分析與計算

    本帖最后由 張飛電子學(xué)院魯肅 于 2021-1-30 13:21 編輯 本文詳細(xì)分析計算功率MOSFET開關(guān)損耗,并論述實際狀態(tài)下功率MOSFET的開通過程和自然零電壓關(guān)斷的過程,從而使電子
    發(fā)表于 01-30 13:20

    如何更加深入理解MOSFET開關(guān)損耗?

    如何更加深入理解MOSFET開關(guān)損耗?Coss產(chǎn)生開關(guān)損耗對開關(guān)過程有什么影響?
    發(fā)表于 04-07 06:01

    開關(guān)損耗包括哪幾種

    一、開關(guān)損耗包括開通損耗和關(guān)斷損耗兩種。開通損耗是指功率管從截止到導(dǎo)通時所產(chǎn)生的功率損耗;關(guān)斷損耗
    發(fā)表于 10-29 07:10

    集成高側(cè)MOSFET中的開關(guān)損耗分析

    圖1:開關(guān)損耗讓我們先來看看在集成高側(cè)MOSFET中的開關(guān)損耗。在每個開關(guān)周期開始時,驅(qū)動器開始向集成MOSFET的柵極供應(yīng)電流。從第1部分,您了解到MOSFET在其終端具有寄生電容。
    發(fā)表于 11-16 08:00

    MOSFET開關(guān)損耗分析

    為了有效解決金屬-氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)在通信設(shè)備直流-48 V緩啟動應(yīng)用電路中出現(xiàn)的開關(guān)損耗失效問題,通過對MOSFET 柵極電荷、極間電容的闡述和導(dǎo)通過程的解剖,定位了MOSFET 開關(guān)損耗的來源,進(jìn)而為緩啟動電路設(shè)計優(yōu)化,減少MOSFET的
    發(fā)表于 01-04 14:59 ?41次下載

    開關(guān)損耗測試在電源調(diào)試中重要作用

    MOSFET/IGBT的開關(guān)損耗測試是電源調(diào)試中非常關(guān)鍵的環(huán)節(jié),但很多工程師對開關(guān)損耗的測量還停留在人工計算的感性認(rèn)知上,PFC MOSFET的開關(guān)損耗更是只能依據(jù)口口相傳的經(jīng)驗反復(fù)摸索,那么該如何量化評估呢?
    的頭像 發(fā)表于 11-10 08:56 ?6535次閱讀

    基于CMM下開關(guān)損耗和反激開關(guān)損耗分析以及公式計算

    1、CCM 模式開關(guān)損耗 CCM 模式與 DCM 模式的開關(guān)損耗有所不同。先講解復(fù)雜 CCM 模式,DCM 模式很簡單了。
    的頭像 發(fā)表于 01-13 09:28 ?8998次閱讀
    基于CMM下<b class='flag-5'>開關(guān)損耗</b>和反激<b class='flag-5'>開關(guān)損耗</b><b class='flag-5'>分析</b>以及公式計算

    如何準(zhǔn)確的測量開關(guān)損耗

    一個高質(zhì)量的開關(guān)電源效率高達(dá)95%,而開關(guān)電源的損耗大部分來自開關(guān)器件(MOSFET和二極管),所以正確的測量開關(guān)器件的
    發(fā)表于 06-27 10:22 ?2250次閱讀

    功率MOSFET的開關(guān)損耗分析

    功率MOSFET的開關(guān)損耗分析
    發(fā)表于 04-16 14:17 ?49次下載

    開關(guān)損耗原理分析

    一、開關(guān)損耗包括開通損耗和關(guān)斷損耗兩種。開通損耗是指功率管從截止到導(dǎo)通時所產(chǎn)生的功率損耗;關(guān)斷損耗
    發(fā)表于 10-22 10:51 ?11次下載
    <b class='flag-5'>開關(guān)損耗</b>原理<b class='flag-5'>分析</b>

    全SiC功率模塊的開關(guān)損耗

    全SiC功率模塊與現(xiàn)有的功率模塊相比具有SiC與生俱來的優(yōu)異性能。本文將對開關(guān)損耗進(jìn)行介紹,開關(guān)損耗也可以說是傳統(tǒng)功率模塊所要解決的重大課題。
    發(fā)表于 02-24 11:51 ?667次閱讀
    全SiC功率模塊的<b class='flag-5'>開關(guān)損耗</b>