【安全算法之SHA256】SHA256摘要運(yùn)算的C語(yǔ)言源碼實(shí)現(xiàn)
- 概述
- 頭文件定義
- C語(yǔ)言版本的實(shí)現(xiàn)源碼
- 測(cè)試用例
- github倉(cāng)庫(kù)
- 更多參考鏈接
概述
大家都知道摘要算法在安全領(lǐng)域,也是一個(gè)特別重要的存在,而SHA256是其中最常見的一種摘要算法,它的特點(diǎn)就是計(jì)算復(fù)雜度較低,不等長(zhǎng)的數(shù)據(jù)原文輸入,可以得出等長(zhǎng)的摘要值,這個(gè)值是固定為32字節(jié)。正是由于這種特殊性,很多重要的數(shù)據(jù)完整性校驗(yàn)領(lǐng)域,都可以看到SHA256的影子。在一些安全認(rèn)證中,摘要運(yùn)算的算法等級(jí)至少是大于等于SHA256的安全級(jí)別,足以證明SHA256的重要性。
今天給大家?guī)鞸HA256的C源碼版本實(shí)現(xiàn),歡迎大家深入學(xué)習(xí)和討論。
頭文件定義
頭文件定義如下,主要定義了SHA256的上下文結(jié)構(gòu)體,以及導(dǎo)出的三個(gè)API:
#ifndef __SHA256_H__
#define __SHA256_H__
#include
#define SHA256_DIGEST_LEN 32 // SHA256 outputs a 32 byte digest
typedef uint8_t BYTE; // 8-bit byte
typedef uint32_t WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct _sha256_ctx_t {
uint8_t data[64];
uint32_t data_len;
unsigned long long bit_len;
uint32_t state[8];
} sha256_ctx_t;
void crypto_sha256_init(sha256_ctx_t *ctx);
void crypto_sha256_update(sha256_ctx_t *ctx, const uint8_t *data, uint32_t len);
void crypto_sha256_final(sha256_ctx_t *ctx, uint8_t *digest);
#endif // __SHA256_H__
C語(yǔ)言版本的實(shí)現(xiàn)源碼
下面是SHA256的C語(yǔ)言版本實(shí)現(xiàn),主要也是圍繞導(dǎo)出的3個(gè)API:
#include
#include
#include "sha256.h"
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
static const uint32_t k[64] =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
static void local_sha256_transform(sha256_ctx_t *ctx, const uint8_t *data)
{
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4) {
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
}
for ( ; i < 64; ++i) {
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void crypto_sha256_init(sha256_ctx_t *ctx)
{
ctx->data_len = 0;
ctx->bit_len = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void crypto_sha256_update(sha256_ctx_t *ctx, const uint8_t *data, uint32_t len)
{
uint32_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->data_len] = data[i];
ctx->data_len++;
if (ctx->data_len == 64) {
local_sha256_transform(ctx, ctx->data);
ctx->bit_len += 512;
ctx->data_len = 0;
}
}
}
void crypto_sha256_final(sha256_ctx_t *ctx, uint8_t *digest)
{
uint32_t i;
i = ctx->data_len;
// Pad whatever data is left in the buffer.
if (ctx->data_len < 56) {
ctx->data[i++] = 0x80;
while (i < 56) {
ctx->data[i++] = 0x00;
}
} else {
ctx->data[i++] = 0x80;
while (i < 64) {
ctx->data[i++] = 0x00;
}
local_sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bit_len += ctx->data_len * 8;
ctx->data[63] = ctx->bit_len;
ctx->data[62] = ctx->bit_len >> 8;
ctx->data[61] = ctx->bit_len >> 16;
ctx->data[60] = ctx->bit_len >> 24;
ctx->data[59] = ctx->bit_len >> 32;
ctx->data[58] = ctx->bit_len >> 40;
ctx->data[57] = ctx->bit_len >> 48;
ctx->data[56] = ctx->bit_len >> 56;
local_sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output digest.
for (i = 0; i < 4; ++i) {
digest[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
digest[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
digest[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
digest[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
digest[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
digest[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
digest[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
digest[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
測(cè)試用例
針對(duì)SHA256導(dǎo)出的三個(gè)接口,我編寫了以下測(cè)試用例:
#include
#include
#include "sha256.h"
#include "convert.h"
int log_hexdump(const char *title, const unsigned char *data, int len)
{
char str[160], octet[10];
int ofs, i, k, d;
const unsigned char *buf = (const unsigned char *)data;
const char dimm[] = "+------------------------------------------------------------------------------+";
printf("%s (%d bytes):\r\n", title, len);
printf("%s\r\n", dimm);
printf("| Offset : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0123456789ABCDEF |\r\n");
printf("%s\r\n", dimm);
for (ofs = 0; ofs < (int)len; ofs += 16) {
d = snprintf( str, sizeof(str), "| %08X: ", ofs );
for (i = 0; i < 16; i++) {
if ((i + ofs) < (int)len) {
snprintf( octet, sizeof(octet), "%02X ", buf[ofs + i] );
} else {
snprintf( octet, sizeof(octet), " " );
}
d += snprintf( &str[d], sizeof(str) - d, "%s", octet );
}
d += snprintf( &str[d], sizeof(str) - d, " " );
k = d;
for (i = 0; i < 16; i++) {
if ((i + ofs) < (int)len) {
str[k++] = (0x20 <= (buf[ofs + i]) && (buf[ofs + i]) <= 0x7E) ? buf[ofs + i] : '.';
} else {
str[k++] = ' ';
}
}
str[k] = '\0';
printf("%s |\r\n", str);
}
printf("%s\r\n", dimm);
return 0;
}
int main(int argc, const char *argv[])
{
const char *data = "C1D0F8FB4958670DBA40AB1F3752EF0D";
const char *digest_exp_str = "97B7437DF061F15182974B18E62B3D8AAFE333DCBDD2074CB8D4916509B4AD23";
uint8_t digest_calc[SHA256_DIGEST_LEN];
uint8_t digest_exp_hex[SHA256_DIGEST_LEN];
sha256_ctx_t ctx;
const char *p_calc = data;
uint8_t data_bytes[128];
uint16_t len_bytes;
char data_str[128];
if (argc > 1) {
p_calc = argv[1];
}
utils_hex_string_2_bytes(data, data_bytes, &len_bytes);
log_hexdump("data_bytes", data_bytes, len_bytes);
utils_bytes_2_hex_string(data_bytes, len_bytes, data_str);
printf("data_str: %s\n", data_str);
if (!strcmp(data, data_str)) {
printf("hex string - bytes convert OK\n");
} else {
printf("hex string - bytes convert FAIL\n");
}
crypto_sha256_init(&ctx);
crypto_sha256_update(&ctx, (uint8_t *)p_calc, strlen(p_calc));
crypto_sha256_final(&ctx, digest_calc);
utils_hex_string_2_bytes(digest_exp_str, digest_exp_hex, &len_bytes);
if (len_bytes == sizeof(digest_calc) && !memcmp(digest_calc, digest_exp_hex, sizeof(digest_calc))) {
printf("SHA256 digest test OK\n");
log_hexdump("digest_calc", digest_calc, sizeof(digest_calc));
} else {
log_hexdump("digest_calc", digest_calc, sizeof(digest_calc));
log_hexdump("digest_exp", digest_exp_hex, sizeof(digest_exp_hex));
printf("SHA256 digest test FAIL\n");
}
return 0;
}
測(cè)試用例比較簡(jiǎn)單,就是對(duì)字符串C1D0F8FB4958670DBA40AB1F3752EF0D進(jìn)行SHA1運(yùn)算,期望的摘要結(jié)果的hexstring是97B7437DF061F15182974B18E62B3D8AAFE333DCBDD2074CB8D4916509B4AD23,這個(gè)期望值是用算法工具算出來的。
先用API接口算出摘要值,再與期望值比較,這里有個(gè)hexstringtobyte的轉(zhuǎn)換,如果比較一致則表示API計(jì)算OK;反之,接口計(jì)算失敗。
同時(shí),也歡迎大家設(shè)計(jì)提供更多的測(cè)試案例代碼。
github倉(cāng)庫(kù)
以上代碼和測(cè)試用例,及編譯運(yùn)行等,可以參考我的github倉(cāng)庫(kù),有詳細(xì)的流程介紹,歡迎大家交流討論。如果有幫助到你的話,記得幫忙點(diǎn)亮一顆星哦。
更多參考鏈接
[1] 【安全算法的github倉(cāng)庫(kù)】
[2] 【安全算法之概述】一文帶你簡(jiǎn)要了解常見常用的安全算法
-
C語(yǔ)言
+關(guān)注
關(guān)注
180文章
7595瀏覽量
135866 -
源碼
+關(guān)注
關(guān)注
8文章
632瀏覽量
29110 -
SHA256
+關(guān)注
關(guān)注
0文章
5瀏覽量
10012 -
安全算法
+關(guān)注
關(guān)注
0文章
9瀏覽量
6097
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論