0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模型評(píng)估、模型選擇和算法選擇技術(shù)的正確使用

深度學(xué)習(xí)自然語(yǔ)言處理 ? 來源:機(jī)器之心 ? 作者:機(jī)器之心 ? 2022-09-22 14:15 ? 次閱讀

摘要:模型評(píng)估、模型選擇和算法選擇技術(shù)的正確使用在學(xué)術(shù)性機(jī)器學(xué)習(xí)研究和諸多產(chǎn)業(yè)環(huán)境中異常關(guān)鍵。本文回顧了用于解決以上三項(xiàng)任務(wù)中任何一個(gè)的不同技術(shù),并參考理論和實(shí)證研究討論了每一項(xiàng)技術(shù)的主要優(yōu)勢(shì)和劣勢(shì)。進(jìn)而,給出建議以促進(jìn)機(jī)器學(xué)習(xí)研究與應(yīng)用方面的最佳實(shí)踐。本文涵蓋了用于模型評(píng)估和選擇的常見方法,比如留出方法,但是不推薦用于小數(shù)據(jù)集。不同風(fēng)格的 bootstrap 技術(shù)也被介紹,以評(píng)估性能的不確定性,以作為通過正態(tài)空間的置信區(qū)間的替代,如果 bootstrapping 在計(jì)算上是可行的。在討論偏差-方差權(quán)衡時(shí),把 leave-one-out 交叉驗(yàn)證和 k 折交叉驗(yàn)證進(jìn)行對(duì)比,并基于實(shí)證證據(jù)給出 k 的最優(yōu)選擇的實(shí)際提示。論文展示了用于算法對(duì)比的不同統(tǒng)計(jì)測(cè)試,以及處理多種對(duì)比的策略(比如綜合測(cè)試、多對(duì)比糾正)。最后,當(dāng)數(shù)據(jù)集很小時(shí),本文推薦替代方法(比如 5×2cv 交叉驗(yàn)證和嵌套交叉驗(yàn)證)以對(duì)比機(jī)器學(xué)習(xí)算法。

1 簡(jiǎn)介:基本的模型評(píng)估項(xiàng)和技術(shù)

機(jī)器學(xué)習(xí)已經(jīng)成為我們生活的中心,無(wú)論是作為消費(fèi)者、客戶、研究者還是從業(yè)人員。無(wú)論將預(yù)測(cè)建模技術(shù)應(yīng)用到研究還是商業(yè)問題,我認(rèn)為其共同點(diǎn)是:做出足夠好的預(yù)測(cè)。用模型擬合訓(xùn)練數(shù)據(jù)是一回事,但我們?nèi)绾瘟私饽P偷姆夯芰??我們?nèi)绾未_定模型是否只是簡(jiǎn)單地記憶訓(xùn)練數(shù)據(jù),無(wú)法對(duì)未見過的樣本做出好的預(yù)測(cè)?還有,我們?nèi)绾芜x擇好的模型呢?也許還有更好的算法可以處理眼前的問題呢?

模型評(píng)估當(dāng)然不是機(jī)器學(xué)習(xí)工作流程的終點(diǎn)。在處理數(shù)據(jù)之前,我們希望事先計(jì)劃并使用合適的技術(shù)。本文將概述這類技術(shù)和選擇方法,并介紹如何將其應(yīng)用到更大的工程中,即典型的機(jī)器學(xué)習(xí)工作流。

1.1 性能評(píng)估:泛化性能 vs. 模型選擇

讓我們考慮這個(gè)問題:「如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?」典型的回答可能是:「首先,將訓(xùn)練數(shù)據(jù)饋送給學(xué)習(xí)算法以學(xué)習(xí)一個(gè)模型。第二,預(yù)測(cè)測(cè)試集的標(biāo)簽。第三,計(jì)算模型對(duì)測(cè)試集的預(yù)測(cè)準(zhǔn)確率。」然而,評(píng)估模型性能并非那么簡(jiǎn)單。也許我們應(yīng)該從不同的角度解決之前的問題:「為什么我們要關(guān)心性能評(píng)估呢?」理論上,模型的性能評(píng)估能給出模型的泛化能力,在未見過的數(shù)據(jù)上執(zhí)行預(yù)測(cè)是應(yīng)用機(jī)器學(xué)習(xí)或開發(fā)新算法的主要問題。通常,機(jī)器學(xué)習(xí)包含大量實(shí)驗(yàn),例如超參數(shù)調(diào)整。在訓(xùn)練數(shù)據(jù)集上用不同的超參數(shù)設(shè)置運(yùn)行學(xué)習(xí)算法最終會(huì)得到不同的模型。由于我們感興趣的是從該超參數(shù)設(shè)置中選擇最優(yōu)性能的模型,因此我們需要找到評(píng)估每個(gè)模型性能的方法,以將它們進(jìn)行排序。

我們需要在微調(diào)算法之外更進(jìn)一步,即不僅僅是在給定的環(huán)境下實(shí)驗(yàn)單個(gè)算法,而是對(duì)比不同的算法,通常從預(yù)測(cè)性能和計(jì)算性能方面進(jìn)行比較。我們總結(jié)一下評(píng)估模型的預(yù)測(cè)性能的主要作用:

評(píng)估模型的泛化性能,即模型泛化到未見過數(shù)據(jù)的能力;

通過調(diào)整學(xué)習(xí)算法和在給定的假設(shè)空間中選擇性能最優(yōu)的模型,以提升預(yù)測(cè)性能;

確定最適用于待解決問題的機(jī)器學(xué)習(xí)算法。因此,我們可以比較不同的算法,選擇其中性能最優(yōu)的模型;或者選擇算法的假設(shè)空間中的性能最優(yōu)模型。

雖然上面列出的三個(gè)子任務(wù)都是為了評(píng)估模型的性能,但是它們需要使用的方法是不同的。本文將概述解決這些子任務(wù)需要的不同方法。

我們當(dāng)然希望盡可能精確地預(yù)測(cè)模型的泛化性能。然而,本文的一個(gè)要點(diǎn)就是,如果偏差對(duì)所有模型的影響是等價(jià)的,那么偏差性能評(píng)估基本可以完美地進(jìn)行模型選擇和算法選擇。如果要用排序選擇最優(yōu)的模型或算法,我們只需要知道它們的相對(duì)性能就可以了。例如,如果所有的性能評(píng)估都是有偏差的,并且低估了它們的性能(10%),這不會(huì)影響最終的排序。更具體地說,如果我們得到如下三個(gè)模型,這些模型的預(yù)測(cè)準(zhǔn)確率如下:

M2: 75% > M1: 70% > M3: 65%,

如果我們添加了 10% 的性能偏差(低估),則三種模型的排序沒有發(fā)生改變:

M2: 65% > M1: 60% > M3: 55%.

但是,注意如果最佳模型(M2)的泛化準(zhǔn)確率是 65%,很明顯這個(gè)精度是非常低的。評(píng)估模型的絕對(duì)性能可能是機(jī)器學(xué)習(xí)中最難的任務(wù)之一。

21b5d478-3a35-11ed-9e49-dac502259ad0.jpg

圖 2:留出驗(yàn)證方法的圖示。

2 Bootstrapping 和不確定性

本章介紹一些用于模型評(píng)估的高級(jí)技術(shù)。我們首先討論用來評(píng)估模型性能不確定性和模型方差、穩(wěn)定性的技術(shù)。之后我們將介紹交叉驗(yàn)證方法用于模型選擇。如第一章所述,關(guān)于我們?yōu)槭裁匆P(guān)心模型評(píng)估,存在三個(gè)相關(guān)但不同的任務(wù)或原因。

我們想評(píng)估泛化準(zhǔn)確度,即模型在未見數(shù)據(jù)上的預(yù)測(cè)性能。

我們想通過調(diào)整學(xué)習(xí)算法、從給定假設(shè)空間中選擇性能最好的模型,來改善預(yù)測(cè)性能。

我們想確定手頭最適合待解決問題的機(jī)器學(xué)習(xí)算法。因此,我們想對(duì)比不同的算法,選出性能最好的一個(gè);或從算法的假設(shè)空間中選出性能最好的模型。

21c717ce-3a35-11ed-9e49-dac502259ad0.jpg

圖 3:偏差和方差的不同組合的圖示。

21d76494-3a35-11ed-9e49-dac502259ad0.png

圖 4:在 MNIST 數(shù)據(jù)集上 softmax 分類器的學(xué)習(xí)曲線。

220610d2-3a35-11ed-9e49-dac502259ad0.jpg

圖 5:二維高斯分布中的重復(fù)子采樣。

3 交叉驗(yàn)證和超參數(shù)優(yōu)化

幾乎所有機(jī)器學(xué)習(xí)算法都需要我們機(jī)器學(xué)習(xí)研究者和從業(yè)者指定大量設(shè)置。這些超參數(shù)幫助我們控制機(jī)器學(xué)習(xí)算法在優(yōu)化性能、找出偏差方差最佳平衡時(shí)的行為。用于性能優(yōu)化的超參數(shù)調(diào)整本身就是一門藝術(shù),沒有固定規(guī)則可以保證在給定數(shù)據(jù)集上的性能最優(yōu)。前面的章節(jié)提到了用于評(píng)估模型泛化性能的留出技術(shù)和 bootstrap 技術(shù)。偏差-方差權(quán)衡和計(jì)算性能估計(jì)的不穩(wěn)定性方法都得到了介紹。本章主要介紹用于模型評(píng)估和選擇的不同交叉驗(yàn)證方法,包括對(duì)不同超參數(shù)配置的模型進(jìn)行排序和評(píng)估其泛化至獨(dú)立數(shù)據(jù)集的性能。

本章生成圖像的代碼詳見:https://github.com/rasbt/model-eval-article-supplementary/blob/master/code/resampling-and-kfold.ipynb。

2216aa46-3a35-11ed-9e49-dac502259ad0.jpg

圖 11:logistic 回歸的概念圖示。

我們可以把超參數(shù)調(diào)整(又稱超參數(shù)優(yōu)化)和模型選擇的過程看作元優(yōu)化任務(wù)。當(dāng)學(xué)習(xí)算法在訓(xùn)練集上優(yōu)化目標(biāo)函數(shù)時(shí)(懶惰學(xué)習(xí)器是例外),超參數(shù)優(yōu)化是基于它的另一項(xiàng)任務(wù)。這里,我們通常想優(yōu)化性能指標(biāo),如分類準(zhǔn)確度或接受者操作特征曲線(ROC 曲線)下面積。超參數(shù)調(diào)整階段之后,基于測(cè)試集性能選擇模型似乎是一種合理的方法。但是,多次重復(fù)使用測(cè)試集可能會(huì)帶來偏差和最終性能估計(jì),且可能導(dǎo)致對(duì)泛化性能的預(yù)期過分樂觀,可以說是「測(cè)試集泄露信息」。為了避免這個(gè)問題,我們可以使用三次分割(three-way split),將數(shù)據(jù)集分割成訓(xùn)練集、驗(yàn)證集和測(cè)試集。對(duì)超參數(shù)調(diào)整和模型選擇進(jìn)行訓(xùn)練-驗(yàn)證可以保證測(cè)試集「獨(dú)立」于模型選擇。這里,我們?cè)倩仡櫼幌滦阅芄烙?jì)的「3 個(gè)目標(biāo)」:

我們想評(píng)估泛化準(zhǔn)確度,即模型在未見數(shù)據(jù)上的預(yù)測(cè)性能。

我們想通過調(diào)整學(xué)習(xí)算法、從給定假設(shè)空間中選擇性能最好的模型,來改善預(yù)測(cè)性能。

我們想確定最適合待解決問題的機(jī)器學(xué)習(xí)算法。因此,我們想對(duì)比不同的算法,選出性能最好的一個(gè),從算法的假設(shè)空間中選出性能最好的模型。

222647e4-3a35-11ed-9e49-dac502259ad0.jpg

圖 12:超參數(shù)調(diào)整中三路留出方法(three-way holdout method)圖示。

2234c71a-3a35-11ed-9e49-dac502259ad0.jpg

圖 13:k 折交叉驗(yàn)證步驟圖示。

223bb37c-3a35-11ed-9e49-dac502259ad0.png

224a8d2a-3a35-11ed-9e49-dac502259ad0.png

227753b4-3a35-11ed-9e49-dac502259ad0.png

圖 16:模型選擇中 k 折交叉驗(yàn)證的圖示。

審核編輯:彭靜
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:綜述 | 機(jī)器學(xué)習(xí)中的模型評(píng)價(jià)、模型選擇與算法選擇!

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    【大語(yǔ)言模型:原理與工程實(shí)踐】核心技術(shù)綜述

    其預(yù)訓(xùn)練和微調(diào),直到模型的部署和性能評(píng)估。以下是對(duì)這些技術(shù)的綜述: 模型架構(gòu): LLMs通常采用深層的神經(jīng)網(wǎng)絡(luò)架構(gòu),最常見的是Transformer網(wǎng)絡(luò),它包含多個(gè)自注意力層,能夠捕
    發(fā)表于 05-05 10:56

    基于多傳感器的多模型機(jī)動(dòng)目標(biāo)跟蹤算法設(shè)計(jì)

    環(huán)境的多模型機(jī)動(dòng)目標(biāo)跟蹤算法。仿真結(jié)果驗(yàn)證了該算法跟蹤性能的有效性?! ? 引言  隨著信息技術(shù)的快速發(fā)展和現(xiàn)代軍事及民用需求的不斷提高,對(duì)目標(biāo)跟蹤的精度也相應(yīng)地提出了更高的要求。在真
    發(fā)表于 12-05 15:16

    Ch2模型評(píng)估選擇

    【Machine Learining】Ch2 模型評(píng)估選擇
    發(fā)表于 05-28 06:55

    基于Agent技術(shù)的決策模型協(xié)作問題研究

    本文通過對(duì)模型進(jìn)行Agent封裝,以及模型之間的協(xié)作,將決策算法選擇算法中系數(shù)的確定問題通過評(píng)價(jià)模型
    發(fā)表于 09-01 10:54 ?12次下載

    模型電池的選擇和維護(hù)

    模型電池的選擇和維護(hù) 模型用電池有一次性的錳鋅電池、堿性電池、鎳氫電池和密封鉛蓄電池等,性能各異。模型用的電池要根據(jù)模型對(duì)動(dòng)力的要求,除
    發(fā)表于 11-06 10:32 ?568次閱讀

    量子遺傳算法原理與云服務(wù)選擇模型的介紹

    選擇模型,并將量子遺傳算法引入云服務(wù)選擇問題中,利用量子編碼和量子操作的特性,實(shí)現(xiàn)優(yōu)化服務(wù)選擇的計(jì)算。通過實(shí)驗(yàn)仿真,該
    發(fā)表于 11-14 14:40 ?3次下載
    量子遺傳<b class='flag-5'>算法</b>原理與云服務(wù)<b class='flag-5'>選擇</b><b class='flag-5'>模型</b>的介紹

    基于前景理論的行人路徑選擇模型

    路徑選擇是人們?nèi)粘I钪蓄l繁遭遇的現(xiàn)實(shí)問題。針對(duì)在行人導(dǎo)航系統(tǒng)的輔助下,行人仍然需要通過主觀判斷識(shí)別路徑指示信息中的地標(biāo)和真實(shí)地標(biāo)是否匹配的問題,建立了顧及主觀判斷延誤的行人道路網(wǎng)絡(luò)模型。通過將主觀
    發(fā)表于 12-21 17:02 ?0次下載

    基于LDA主題模型進(jìn)行數(shù)據(jù)源選擇方法

    聯(lián)邦搜索是從大規(guī)模深層網(wǎng)上獲取信息的一種重要技術(shù)。給定一個(gè)用戶查詢,聯(lián)邦搜索系統(tǒng)需要解決的一個(gè)主要問題是數(shù)據(jù)源選擇問題,即從海量數(shù)據(jù)源中選出一組最有可能返回相關(guān)結(jié)果的數(shù)據(jù)源。現(xiàn)有的數(shù)據(jù)源選擇
    發(fā)表于 01-04 15:00 ?0次下載
    基于LDA主題<b class='flag-5'>模型</b>進(jìn)行數(shù)據(jù)源<b class='flag-5'>選擇</b>方法

    在電磁兼容分析系統(tǒng)中應(yīng)如何選擇傳播模型?

    在無(wú)線電網(wǎng)絡(luò)規(guī)劃和干擾評(píng)估過程中,對(duì)于某項(xiàng)特定的任務(wù),選擇一個(gè)非常適當(dāng)?shù)膫鞑?b class='flag-5'>模型往往是十分困難的,有時(shí)還會(huì)產(chǎn)生混亂。本文并非從區(qū)別不同傳播模型的差異出發(fā),即建議用戶在何種環(huán)境下使用何種
    發(fā)表于 08-15 17:49 ?1894次閱讀

    機(jī)器學(xué)習(xí)的模型評(píng)估選擇詳細(xì)資料說明

    本文檔的主要內(nèi)容詳細(xì)介紹的是機(jī)器學(xué)習(xí)的模型評(píng)估選擇詳細(xì)資料說明。
    發(fā)表于 03-24 08:00 ?0次下載
    機(jī)器學(xué)習(xí)的<b class='flag-5'>模型</b><b class='flag-5'>評(píng)估</b>與<b class='flag-5'>選擇</b>詳細(xì)資料說明

    電磁兼容分析系統(tǒng)中傳播模型應(yīng)該如何選擇

    在無(wú)線電網(wǎng)絡(luò)規(guī)劃和干擾評(píng)估過程中,對(duì)于某項(xiàng)特定的任務(wù),選擇一個(gè)非常適當(dāng)?shù)膫鞑?b class='flag-5'>模型往往是十分困難的,有時(shí)還會(huì)產(chǎn)生混亂。本文并非從區(qū)別不同傳播模型的差異出發(fā),即建議用戶在何種環(huán)境下使用何種
    發(fā)表于 01-11 10:28 ?1次下載

    分類模型評(píng)估指標(biāo)匯總

    對(duì)模型進(jìn)行評(píng)估時(shí),可以選擇很多種指標(biāo),但不同的指標(biāo)可能得到不同的結(jié)果,如何選擇合適的指標(biāo),需要取決于任務(wù)需求。
    的頭像 發(fā)表于 12-10 21:38 ?615次閱讀

    如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?機(jī)器學(xué)習(xí)的算法選擇

    如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?典型的回答可能是:首先,將訓(xùn)練數(shù)據(jù)饋送給學(xué)習(xí)算法以學(xué)習(xí)一個(gè)模型。第二,預(yù)測(cè)測(cè)試集的標(biāo)簽。第三,計(jì)算模型對(duì)測(cè)試集的
    發(fā)表于 04-04 14:15 ?956次閱讀

    NVIDIA助力提供多樣、靈活的模型選擇

    在本案例中,Dify 以模型中立以及開源生態(tài)的優(yōu)勢(shì),為廣大 AI 創(chuàng)新者提供豐富的模型選擇。其集成的 NVIDIAAPI Catalog、NVIDIA NIM和Triton 推理服務(wù)器產(chǎn)品,為
    的頭像 發(fā)表于 09-09 09:19 ?413次閱讀

    常見AI大模型的比較與選擇指南

    選擇AI大模型時(shí),明確具體需求、了解模型的訓(xùn)練數(shù)據(jù)、計(jì)算資源要求和成本,并考慮模型的可解釋性和社區(qū)支持情況等因素至關(guān)重要。以下是對(duì)常見AI大模型
    的頭像 發(fā)表于 10-23 15:36 ?342次閱讀