今天給大俠帶來基于FPGA的擴(kuò)頻系統(tǒng)設(shè)計(jì),由于篇幅較長,分三篇。今天帶來第一篇,下篇。話不多說,上貨。
這里超鏈接前兩篇。如下:
基于FPGA的擴(kuò)頻系統(tǒng)設(shè)計(jì)(上)
基于FPGA的擴(kuò)頻系統(tǒng)設(shè)計(jì)(中)
導(dǎo)讀
在無線通信系統(tǒng)中,普遍使用擴(kuò)頻通信技術(shù),因此擴(kuò)頻技術(shù)對通信系統(tǒng)具有重要的現(xiàn)實(shí)意義。直接序列擴(kuò)頻技術(shù)是應(yīng)用最廣的一種擴(kuò)頻技術(shù),F(xiàn)PGA具備高速度的并行性特點(diǎn)在無線通信系統(tǒng)中的優(yōu)勢日益增強(qiáng),利用FPGA實(shí)現(xiàn)直接序列擴(kuò)頻技術(shù),可增大傳輸速率,可以使擴(kuò)頻技術(shù)有更好的發(fā)展與應(yīng)用。
本篇利用本原多項(xiàng)式產(chǎn)生偽隨機(jī)序列用作擴(kuò)頻,通過同步模塊對擴(kuò)頻后的信號進(jìn)行捕獲,通過直接序列解擴(kuò)模塊進(jìn)行解擴(kuò)。本篇給出了編解碼、擴(kuò)頻解擴(kuò)、同步的整體方案,使用Quartus實(shí)現(xiàn)功能,并結(jié)合Matlab和ModelSim對模塊進(jìn)行調(diào)試和測試,實(shí)現(xiàn)擴(kuò)頻通信模塊的搭建仿真,驗(yàn)證其設(shè)計(jì)的正確性。首先概述了方案設(shè)計(jì)與論證、整體方案的設(shè)計(jì)、各個(gè)模塊的設(shè)計(jì)、個(gè)別模塊的調(diào)試與各個(gè)模塊的仿真驗(yàn)證。本篇主要實(shí)現(xiàn)的模塊有:漢明編碼模塊、直接序列擴(kuò)頻模塊、量化器模塊、同步模塊、直接序列解擴(kuò)模塊和漢明譯碼模塊。各位大俠可依據(jù)自己的需要進(jìn)行閱讀,參考學(xué)習(xí)。
第三篇內(nèi)容摘要:本篇會介紹分析調(diào)試,包括漢明碼解碼模塊調(diào)試、直接序列擴(kuò)頻模塊調(diào)試、同步模塊調(diào)試、整體設(shè)計(jì)資源占用率、整體設(shè)計(jì)RTL設(shè)計(jì)圖,還會介紹系統(tǒng)測試,包括漢明編碼模塊測試、直接序列擴(kuò)頻模塊測試、量化器模塊測試、同步模塊測試、直接序列解擴(kuò)模塊測試、漢明譯碼模塊測試、系統(tǒng)整體測試等相關(guān)內(nèi)容。
四、分析調(diào)試
4.1漢明編解碼模塊調(diào)試
首先利用Matlab該模塊進(jìn)行調(diào)試,利用隨機(jī)函數(shù)生成10個(gè)隨機(jī)數(shù),通過74漢明碼編碼函數(shù)對10個(gè)隨機(jī)函數(shù)進(jìn)行編碼,隨機(jī)數(shù)分別為4’h0、4’hb、4’h6、4’h1、4’h3、4’h9、4’h7、4’h9、4’h7和4’hd,編碼后分別為7’h00、7’h4b、7’h46、7’h51、7’h23、7’h39、7’h17、7’h39、7’h17和7’h0d。具體如圖4.1所示,對應(yīng)Matlab代碼詳見附錄A。
圖4.1 漢明碼編碼Matlab仿真圖
利用Matlab的隨機(jī)函數(shù)生成10個(gè)隨機(jī)數(shù),通過74漢明碼編碼函數(shù)對10個(gè)隨機(jī)函數(shù)進(jìn)行編碼,編碼后引入噪聲如圖4.2所示:
圖4.2 編碼后與加入噪聲后對比圖
通過譯碼函數(shù)進(jìn)行譯碼,如下圖4.3所示:
圖4.3 編碼前與譯碼后對比圖
根據(jù)圖4.3可知,當(dāng)發(fā)生一位碼值錯(cuò)誤時(shí),漢明譯碼模塊可以正確糾錯(cuò);當(dāng)發(fā)生一位以上碼值錯(cuò)誤時(shí),漢明譯碼模塊不能正確糾錯(cuò),導(dǎo)致譯碼錯(cuò)誤。利用Matlab可知漢明譯碼模塊具有譯碼能力和一位碼值的糾錯(cuò)能力。
利用Verilog對漢明碼編碼模塊和漢明譯碼模塊進(jìn)行編寫,然后一同進(jìn)行調(diào)試,在兩個(gè)模塊中間加一噪聲模塊,保證編碼后數(shù)據(jù)任意一位發(fā)生錯(cuò)誤,通過譯碼模塊后,判斷是否能夠進(jìn)行正確糾錯(cuò),編碼前數(shù)據(jù)與編碼后的數(shù)據(jù)是否一致,判斷兩個(gè)模塊的正確性,調(diào)試模型如圖4.4所示:
圖4.4 斷言調(diào)試模型
ModelSim仿真波形截圖如圖4.5所示:
圖4.5 漢明編解碼模塊仿真波形圖
利用斷言的仿真方式打印報(bào)告如圖4.6所示,通過確認(rèn)編解碼前后數(shù)據(jù)一致,也證明漢明編碼模塊和漢明譯碼模塊正確性。
圖4.6 打印結(jié)果圖
4.2直接序列擴(kuò)頻模塊調(diào)試
利用Matlab對該模塊進(jìn)行調(diào)試,利用Matlab偽隨機(jī)函數(shù)生成偽隨機(jī)數(shù),通過設(shè)置初始值來與3.4.2節(jié)表3.2的結(jié)果進(jìn)行對比,通過對比可以確定生成偽隨機(jī)序列滿足要求,為采用Verilog設(shè)計(jì)打好堅(jiān)實(shí)的基礎(chǔ)。如圖4.7為Matlab生成的偽隨機(jī)數(shù),對應(yīng)Matlab代碼詳見附錄A。
圖4.7 Matlab生成偽隨機(jī)數(shù)圖
4.3同步模塊調(diào)試
在進(jìn)行同步調(diào)試時(shí)出現(xiàn)對不齊同步頭的問題,例如計(jì)算所延時(shí)時(shí)間應(yīng)為29個(gè)系統(tǒng)時(shí)鐘周期,即計(jì)數(shù)器僅需要延時(shí)29個(gè)時(shí)鐘周期,因?yàn)橛?jì)數(shù)器是從“0”開始進(jìn)行計(jì)數(shù),當(dāng)計(jì)數(shù)值等于延時(shí)時(shí)間-1時(shí),模塊可以進(jìn)行同步頭解擴(kuò)處理,由于沒有對齊同步頭,導(dǎo)致利用最小二乘法計(jì)算結(jié)果均大于預(yù)設(shè)閾值,系統(tǒng)無法進(jìn)行下去。仿真波形截圖如圖4.8所示:
圖4.8 同步錯(cuò)誤情況仿真波形圖
根據(jù)仿真波形結(jié)合設(shè)計(jì)代碼最終找到原因,由于同步模塊對延時(shí)時(shí)間信號進(jìn)行捕獲也需要一個(gè)系統(tǒng)時(shí)鐘周期,所以計(jì)數(shù)器的計(jì)數(shù)值應(yīng)該等于延時(shí)時(shí)間-2,模塊才可以進(jìn)行同步頭解擴(kuò)處理,仿真波形截圖如圖4.9所示:
圖4.9 同步修改正確仿真波形圖
4.4 整體設(shè)計(jì)資源占用率
在設(shè)計(jì)完成后,在如圖4.10所示,該整體設(shè)計(jì)共使用3735個(gè)組合邏輯,占5%;使用1782個(gè)寄存器,占3%;使用39個(gè)I/O引腳,占6%;使用5888個(gè)存儲器,約占1%;使用2個(gè)9bit嵌入式硬件乘法器,約占1%。
圖4.10 FPGA資源占用率
4.5 整體設(shè)計(jì)RTL視圖
由于例化的原因?qū)е屡c整體設(shè)計(jì)框圖不一致,因?yàn)槔瘜ζ湔w設(shè)計(jì)功能無影響。所以設(shè)計(jì)整體RTL視圖如圖4.11所示:
圖4.11 設(shè)計(jì)整體RTL圖
五、系統(tǒng)測試
對整體系統(tǒng)設(shè)計(jì)進(jìn)行測試,通過發(fā)送端到接收端的各個(gè)模塊逐級進(jìn)行測試,確保每個(gè)環(huán)節(jié)的正確性。
5.1 漢明編碼模塊模塊測試
利用Verilog進(jìn)行漢明碼編碼模塊進(jìn)行編寫。在testbench測試文件總輸入數(shù)據(jù)初始化為8’h55,通過時(shí)鐘上升沿到來進(jìn)行取反,所以數(shù)據(jù)依次為8’h55、8’haa、8’h55…8’haa等,接口采用同步fifo進(jìn)行數(shù)據(jù)緩沖,如圖5.1所示,在測試文件中通過判斷t_full信號高有效來判斷fifo是否為滿狀態(tài),若不是滿狀態(tài),則置寫操作的使能信號t_wrreq高電平有效,對fifo進(jìn)行寫操作,否則不進(jìn)行寫操作。漢明碼編碼模塊通過判斷h_empty信號來判斷fifo是否為空狀態(tài),若不為空,則置讀操作使能信號h_rdreq高電平有效對fifo進(jìn)行讀操作,否則不進(jìn)行讀操作。
圖5.1 fifo接口圖
通過漢明碼編碼模塊對數(shù)據(jù)進(jìn)行漢明碼編碼,如圖5.2所示,信號ha_data為對應(yīng)編碼結(jié)果。4’h5編碼為7’h2d,4’ha編碼為7’h52,如圖5.2表明,漢明編碼模塊能夠正確編碼。
圖5.2 漢明碼編碼模塊ModelSim仿真波形圖
5.2 直接序列擴(kuò)頻模塊測試
利用Verilog進(jìn)行偽隨機(jī)數(shù)模塊編寫,初始值為5’b00001,生成序列為如圖5.3所示。信號m_bit為偽隨機(jī)數(shù),在進(jìn)行編碼數(shù)據(jù)信號進(jìn)行擴(kuò)頻之前,應(yīng)將數(shù)據(jù)信息加上幀頭14’b11111111111110,信號m_data為漢明編碼模塊編碼后的7bits數(shù)據(jù)信息,信號s_bit為幀頭或編碼數(shù)據(jù)信息并串轉(zhuǎn)換后的信號,信號bc控制信號s_bit哪個(gè)數(shù)據(jù)位于信號m_bit相異或,得到的結(jié)果為輸出信號q_data,從而實(shí)現(xiàn)直接序列擴(kuò)頻的功能。如圖5.3表明,直接序列擴(kuò)頻模塊能夠正確完成擴(kuò)頻。
圖5.3 直接序列擴(kuò)頻模塊ModelSim仿真波形圖
5.3 量化器模塊測試
量化器模塊將單比特的信號變?yōu)?bits有符號數(shù),仿真波形截圖如圖5.4所示,可以確定量化器模塊能夠正確進(jìn)行對信號量化。
圖5.4 量化器模塊ModelSim仿真波形圖
5.4 同步模塊測試
為了模擬實(shí)際傳輸過程,擴(kuò)頻信號再進(jìn)入同步模塊前引入±46的噪聲,實(shí)際輸入值信號line如圖5.5所示:
圖5.5 加入噪聲后ModelSim仿真波形圖
利用最小二乘法對輸入信號與31個(gè)模板進(jìn)行計(jì)算,得到小于閾值的唯一的延時(shí)數(shù)據(jù)信號xx如圖5.6所示,模板2滿足要求,信號xx計(jì)算值為29,因此要進(jìn)行29拍解擴(kuò)時(shí)鐘周期的延時(shí),來對齊同步頭。
圖5.6 計(jì)算延時(shí)ModelSim仿真波形圖
通過延時(shí)達(dá)到對齊同步頭的目的,對齊使能信號en_m為高電平,說明已對齊。如圖5.7所示:
圖5.7 同步頭對齊ModelSim仿真波形圖
對齊后將數(shù)據(jù)信號每31bits與模板“0”模板“1”進(jìn)行最小二乘法計(jì)算,如圖5.8所示:
圖5.8 同步頭解擴(kuò)ModelSim仿真波形圖
信號data_tm為判斷出的信號數(shù)據(jù),當(dāng)檢測到同步頭最后一位的“0”數(shù)據(jù)信息后,說明同步頭已結(jié)束,同步功能已實(shí)現(xiàn)。如圖5.9所示,同步模塊能夠正確實(shí)現(xiàn)同步。
圖5.9 同步頭識別ModelSim仿真波形圖
5.5直接序列解擴(kuò)模塊測試
當(dāng)檢測到最后一位為“0”后,進(jìn)入數(shù)據(jù)信號解擴(kuò)過程,與同步頭解擴(kuò)相類似,只是把解擴(kuò)后的數(shù)據(jù)利用計(jì)數(shù)器的計(jì)數(shù)值,寫到寄存器對應(yīng)的位置,同時(shí)進(jìn)行串并轉(zhuǎn)換功能,信號bc為計(jì)數(shù)器,信號hdata_reg1為串并轉(zhuǎn)換后存儲數(shù)據(jù)的寄存器。如圖5.10所示,直接序列解擴(kuò)模塊能夠正確實(shí)現(xiàn)解擴(kuò)。
圖5.10 數(shù)據(jù)信息解擴(kuò)ModelSim仿真波形圖
5.6 漢明譯碼模塊測試
利用Verilog對漢明譯碼模塊進(jìn)行編寫。通過直接序列解擴(kuò)模塊后的數(shù)據(jù)經(jīng)過漢明譯碼模塊后,如圖5.11所示:
圖5.11 漢明譯碼ModelSim仿真波形圖
信號data_reg被譯碼正確后通過對fifo的滿標(biāo)志信號H_full高電平進(jìn)行判斷,若為高電平則不進(jìn)行寫操作,若為低電平則將fifo的寫使能信號置高進(jìn)行寫操作,將譯碼后的數(shù)據(jù)寫入fifo中。如圖5.12所示,漢明譯碼模塊能夠?qū)?shù)據(jù)進(jìn)行正確譯碼。
圖5.12 數(shù)據(jù)輸出端口仿真截圖
5.7系統(tǒng)整體測試
通過打印信息確認(rèn),原始數(shù)據(jù)與譯碼后的數(shù)據(jù)一致,能夠確認(rèn)系統(tǒng)整體設(shè)計(jì)正確,如圖5.13所示:
圖5.13 打印結(jié)果截圖
引用2.1節(jié)設(shè)計(jì)要求,總結(jié)系統(tǒng)整體設(shè)計(jì)完成對應(yīng)功能情況,如表5.1所示:
表5.1 系統(tǒng)功能測試表
結(jié)論
直接序列擴(kuò)頻是主流的擴(kuò)頻通信之一,有著許多重要特點(diǎn)與優(yōu)點(diǎn),本篇利用FPGA的處理速度和并行運(yùn)行等特點(diǎn),設(shè)計(jì)完成了一個(gè)基于FPGA擴(kuò)頻模塊設(shè)計(jì)。在利用Quartus II、Matlab和ModelSim對直接序列擴(kuò)頻模塊進(jìn)行了仿真分析。利用偽隨機(jī)序列進(jìn)行擴(kuò)頻,是擴(kuò)頻模塊獲得高抗噪聲性能和抗干擾性能的關(guān)鍵。
本文首先對直接序列擴(kuò)頻模塊一般原理進(jìn)行介紹,然后重點(diǎn)分析直接序列擴(kuò)頻解擴(kuò),合理分配功能模塊、準(zhǔn)確掌握各個(gè)模塊之間的控制和被控制的關(guān)系,以及整體時(shí)序關(guān)系。通過從接口fifo讀取數(shù)據(jù)后,采用漢明編碼模塊,完成了對數(shù)據(jù)的編碼,在完成編碼后加入同步頭,為同步做準(zhǔn)備。利用本原多項(xiàng)式產(chǎn)生偽隨機(jī)數(shù),偽隨機(jī)數(shù)與編碼后的數(shù)據(jù)進(jìn)行異或處理,已達(dá)到擴(kuò)頻的目的,擴(kuò)頻后的數(shù)據(jù)進(jìn)行量化且引入噪聲送入同步模塊。同步模塊利用31個(gè)偽隨機(jī)數(shù)的模板,采用最小二乘法對數(shù)據(jù)進(jìn)行計(jì)算,計(jì)算值小于預(yù)定閾值,則該數(shù)據(jù)對應(yīng)的信息為接收端需要進(jìn)行延拍的個(gè)數(shù),對齊后利用2個(gè)偽隨機(jī)數(shù)的模板對數(shù)據(jù)進(jìn)行“0”和“1”的判斷,當(dāng)同步頭數(shù)據(jù)值出現(xiàn)“0”后,代表下一位開始為數(shù)據(jù)信息,直接序列解擴(kuò)模塊開始進(jìn)行解擴(kuò)處理,和同步模塊同理,將數(shù)據(jù)與2個(gè)偽隨機(jī)進(jìn)行最小二乘法的計(jì)算,從而達(dá)到解擴(kuò)的目的。解擴(kuò)后的數(shù)據(jù)通過漢明譯碼模塊進(jìn)行譯碼后寫入接口fifo,再通過fifo輸出。經(jīng)過驗(yàn)證該整體模塊達(dá)到擴(kuò)頻的目的,提高了抗噪聲的能力,各個(gè)模塊能夠正確完成對應(yīng)功能。
附錄部分源代碼
偽隨機(jī)數(shù)Matlab代碼:
polynomial=[1 0 0 1 0 1]; reg=[0 0 0 0 1]; grade=length(polynomial)-1; PN_Length=(2^grade-1); pn=zeros(1,PN_Length); n=0; c=zeros(1,grade); for i=grade1 if polynomial(i)==1 n=n+1; c(n)=grade+1-i; end end q=0; for i=1:PN_Length p(i)=reg(1) m=reg(grade+1-c(1)); for q=2:grade if (c(q)>0) & (reg(grade+1-c(q))==1) m=~m; end end for q=1:(grade-1) reg(q)=reg(q+1); end reg(5)=m; end
漢明碼編碼譯碼Matlab代碼:
k=4; n=7; msg=randint(10,4,2) code=encode(msg,n,k) code_noise=rem(code+rand(10,7)>0.95,2) rcv=decode(code_noise,n,k) disp(['Error rate in the received code:' num2str(symerr(code,code_noise)/length(code))]) disp(['Error rate after decode:' num2str(symerr(msg,rcv)/length(msg))])
漢明碼編碼Verilog代碼:
module hamming74(clk_10, rst_n, hi_data, ha_data, hm_sel); input clk_10; input rst_n; input [7:0] hi_data; output reg [6:0] ha_data; input hm_sel; wire [3:0] hm_data; wire q0,q1,q2; assign hm_data = hm_sel ? hi_data[7:4] : hi_data[3:0]; always @ (posedge clk_10) begin if(!rst_n) begin ha_data <= 0; end else begin ha_data[6] <= hm_data[3]; ha_data[5] <= hm_data[2]; ha_data[4] <= hm_data[1]; ha_data[3] <= q2; ha_data[2] <= hm_data[0]; ha_data[1] <= q1; ha_data[0] <= q0; end end assign q0 = hm_data[0] ^ hm_data[1] ^ hm_data[3]; assign q1 = hm_data[0] ^ hm_data[2] ^ hm_data[3]; assign q2 = hm_data[1] ^ hm_data[2] ^ hm_data[3]; endmodule
偽隨機(jī)數(shù)產(chǎn)生Verilog代碼:
module m_generator(clk_10, rst_n, m_bit); input clk_10; input rst_n; output m_bit; reg [4:0] q; parameter KEY = 5'b00001; always @ (posedge clk_10) begin if(!rst_n) begin q <= KEY; // q <= 0; end else begin q[0] <= q[1]; q[1] <= q[2]; q[2] <= q[3]; q[3] <= q[4]; q[4] <= q[3] ^ q[0]; end end assign m_bit = q[0]; endmodule
偽隨機(jī)序列與數(shù)據(jù)信息異或處理Verilog代碼:
module me_xor(clk, rst_n, s_bit, m_bit, q_data); input clk, rst_n; input s_bit, m_bit; output reg q_data; always @ (posedge clk) begin if (!rst_n) q_data <= 0; else q_data <= s_bit ^ m_bit; end endmodule
量化器模塊Verilog代碼:
module quantizer(clk, rst_n, qdata, line_out); input clk, rst_n; input qdata; output reg signed [7:0] line_out; always @ (posedge clk) begin if (!rst_n) line_out <= 0; else if (qdata) line_out <= 63; else line_out <= -64; end endmodule
最小二乘法Verilog代碼:
module m_leastsquare(clk_10, rst_n, line, distance); input clk_10, rst_n; input signed [7:0] line; output reg signed [21:0] distance; parameter KEY = 5'b00001; wire m; reg [4:0] count; reg signed [21:0] int_distance; always @ (posedge clk_10) begin if (!rst_n || count >= 5'd30) count <= 0; else count <= count + 5'd1; end m_generator #(.KEY(KEY)) u_mg(.clk_10(clk_10), .rst_n(rst_n), .m_bit(m)); always @ (posedge clk_10) begin if (!rst_n) begin int_distance <= 0; distance <= 0; end else if (count < 5'd30) if (!m) int_distance <= int_distance + (line - 63) * (line - 63); else int_distance <= int_distance + (line + 64) * (line + 64); else begin int_distance <= 0; if (!m) distance <= int_distance + (line - 63) * (line - 63); else distance <= int_distance + (line + 64) * (line + 64); end end endmodule
同步模塊Verilog部分代碼:
module test_mdecoder_ls(clk_10, rst_n, line, xx); input clk_10, rst_n; input signed [7:0] line; output reg [5:0] xx; wire signed [21:0] distance [30:0]; wire [30:0] xx_reg; integer i; m_leastsquare #(.KEY(5'h01)) u0(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[0])); m_leastsquare #(.KEY(5'h10)) u1(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[1])); m_leastsquare #(.KEY(5'h08)) u2(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[2])); m_leastsquare #(.KEY(5'h14)) u3(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[3])); m_leastsquare #(.KEY(5'h0A)) u4(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[4])); m_leastsquare #(.KEY(5'h15)) u5(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[5])); m_leastsquare #(.KEY(5'h1A)) u6(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[6])); m_leastsquare #(.KEY(5'h1D)) u7(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[7])); m_leastsquare #(.KEY(5'h0E)) u8(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[8])); m_leastsquare #(.KEY(5'h17)) u9(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[9])); m_leastsquare #(.KEY(5'h1B)) u10(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[10])); m_leastsquare #(.KEY(5'h0D)) u11(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[11])); m_leastsquare #(.KEY(5'h06)) u12(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[12])); m_leastsquare #(.KEY(5'h03)) u13(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[13])); m_leastsquare #(.KEY(5'h11)) u14(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[14])); m_leastsquare #(.KEY(5'h18)) u15(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[15])); m_leastsquare #(.KEY(5'h1C)) u16(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[16])); m_leastsquare #(.KEY(5'h1E)) u17(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[17])); m_leastsquare #(.KEY(5'h1F)) u18(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[18])); m_leastsquare #(.KEY(5'h0F)) u19(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[19])); m_leastsquare #(.KEY(5'h07)) u20(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[20])); m_leastsquare #(.KEY(5'h13)) u21(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[21])); m_leastsquare #(.KEY(5'h19)) u22(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[22])); m_leastsquare #(.KEY(5'h0C)) u23(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[23])); m_leastsquare #(.KEY(5'h16)) u24(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[24])); m_leastsquare #(.KEY(5'h0B)) u25(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[25])); m_leastsquare #(.KEY(5'h05)) u26(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[26])); m_leastsquare #(.KEY(5'h12)) u27(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[27])); m_leastsquare #(.KEY(5'h09)) u28(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[28])); m_leastsquare #(.KEY(5'h04)) u29(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[29])); m_leastsquare #(.KEY(5'h02)) u30(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[30])); assign xx_reg[0] = (distance[0]>0 && distance[0]< 19'd50000)? 1'b1:1'b0; assign xx_reg[1] = (distance[1]>0 && distance[1]< 19'd50000)? 1'b1:1'b0; assign xx_reg[2] = (distance[2]>0 && distance[2]< 19'd50000)? 1'b1:1'b0; assign xx_reg[3] = (distance[3]>0 && distance[3]< 19'd50000)? 1'b1:1'b0; assign xx_reg[4] = (distance[4]>0 && distance[4]< 19'd50000)? 1'b1:1'b0; assign xx_reg[5] = (distance[5]>0 && distance[5]< 19'd50000)? 1'b1:1'b0; assign xx_reg[6] = (distance[6]>0 && distance[6]< 19'd50000)? 1'b1:1'b0; assign xx_reg[7] = (distance[7]>0 && distance[7]< 19'd50000)? 1'b1:1'b0; assign xx_reg[8] = (distance[8]>0 && distance[8]< 19'd50000)? 1'b1:1'b0; assign xx_reg[9] = (distance[9]>0 && distance[9]< 19'd50000)? 1'b1:1'b0; assign xx_reg[10] = (distance[10]>0 && distance[10]< 19'd50000)? 1'b1:1'b0; assign xx_reg[11] = (distance[11]>0 && distance[11]< 19'd50000)? 1'b1:1'b0; assign xx_reg[12] = (distance[12]>0 && distance[12]< 19'd50000)? 1'b1:1'b0; assign xx_reg[13] = (distance[13]>0 && distance[13]< 19'd50000)? 1'b1:1'b0; assign xx_reg[14] = (distance[14]>0 && distance[14]< 19'd50000)? 1'b1:1'b0; assign xx_reg[15] = (distance[15]>0 && distance[15]< 19'd50000)? 1'b1:1'b0; assign xx_reg[16] = (distance[16]>0 && distance[16]< 19'd50000)? 1'b1:1'b0; assign xx_reg[17] = (distance[17]>0 && distance[17]< 19'd50000)? 1'b1:1'b0; assign xx_reg[18] = (distance[18]>0 && distance[18]< 19'd50000)? 1'b1:1'b0; assign xx_reg[19] = (distance[19]>0 && distance[19]< 19'd50000)? 1'b1:1'b0; assign xx_reg[20] = (distance[20]>0 && distance[20]< 19'd50000)? 1'b1:1'b0; assign xx_reg[21] = (distance[21]>0 && distance[21]< 19'd50000)? 1'b1:1'b0; assign xx_reg[22] = (distance[22]>0 && distance[22]< 19'd50000)? 1'b1:1'b0; assign xx_reg[23] = (distance[23]>0 && distance[23]< 19'd50000)? 1'b1:1'b0; assign xx_reg[24] = (distance[24]>0 && distance[24]< 19'd50000)? 1'b1:1'b0; assign xx_reg[25] = (distance[25]>0 && distance[25]< 19'd50000)? 1'b1:1'b0; assign xx_reg[26] = (distance[26]>0 && distance[26]< 19'd50000)? 1'b1:1'b0; assign xx_reg[27] = (distance[27]>0 && distance[27]< 19'd50000)? 1'b1:1'b0; assign xx_reg[28] = (distance[28]>0 && distance[28]< 19'd50000)? 1'b1:1'b0; assign xx_reg[29] = (distance[29]>0 && distance[29]< 19'd50000)? 1'b1:1'b0; assign xx_reg[30] = (distance[30]>0 && distance[30]< 19'd50000)? 1'b1:1'b0; always @ (*) begin if(!rst_n) begin xx <= 6'd32; end else begin for(i=0;i<30;i=i+1) if(xx_reg[i]==1) xx <= 31-i; end end endmodule
直接序列解擴(kuò)模塊部分Verilog代碼:
module test_mdecoder_2s(clk_10, rst_n, line, data_tm, en_m); //測試,最小二乘法 input clk_10, rst_n; input signed [7:0] line; output data_tm; input en_m; wire signed [30:0] distance [1:0]; wire [30:0] reg1 , reg0 ; m_leastsquare_nl #(.KEY(5'h01)) u32(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[0]), .en_m(en_m));//0 m_leastsquare_no #(.KEY(5'h01)) u33(.clk_10(clk_10), .rst_n(rst_n), .line(line), .distance(distance[1]), .en_m(en_m));//1 assign data_tm = ( distance[1]>distance[0])? 1'b0:1'b1;//比較倆數(shù)據(jù)大小 endmodule
漢明碼譯碼Verilog代碼:
module deserialzer(clk_10, rst_n, data_tm, en_m, hdata, h_full, h_wrreq); /* 串轉(zhuǎn)并模塊加漢明譯碼模塊 */ input clk_10; input rst_n; input data_tm; input en_m; output reg [7:0] hdata; input h_full; output reg h_wrreq; reg [5:0] count; reg [2:0] bc; reg [6:0] hdata_reg1; reg start; wire c0,c1,c2; reg lh; reg [3:0] data_reg; /* 用來計(jì)算數(shù)據(jù)位 */ always @ (posedge clk_10) begin if(!rst_n) begin count <= 0; bc <= 0; end else if(en_m && count < 30) count <= count + 6'd1; else begin if(count == 6'd30 && bc < 3'd6) bc <= bc + 3'd1; else bc <= 0; count <= 0; end end /* 用來緩沖數(shù)據(jù) */ always @ (posedge clk_10) begin hdata_reg1[bc] <= data_tm; end /* 用來控制數(shù)據(jù)寫在高低位,同時(shí)控制發(fā)送寫使能 */ always @ (posedge clk_10) begin if(!rst_n) begin h_wrreq <= 0; lh <= 1; end else if(!h_full && bc == 3'd6 && count == 6'd30) begin lh <= ~lh; if(lh) h_wrreq <= 0; else h_wrreq <= 1; end else h_wrreq <= 0; end /* 用來控制譯碼的使能 */ always @ (posedge clk_10) begin if(!rst_n) begin start <= 0; end else if(!h_full && bc == 3'd6 && count == 6'd29) begin start <= 1; end else start <= 0; end assign c0 = hdata_reg1[0] ^ hdata_reg1[2] ^ hdata_reg1[4] ^ hdata_reg1[6]; assign c1 = hdata_reg1[1] ^ hdata_reg1[2] ^ hdata_reg1[5] ^ hdata_reg1[6]; assign c2 = hdata_reg1[3] ^ hdata_reg1[4] ^ hdata_reg1[5] ^ hdata_reg1[6]; /* 用來高低位數(shù)據(jù)賦值 */ always @ (*) begin if(lh) hdata[7:4] <= data_reg; else hdata[3:0] <= data_reg; end always @ (posedge clk_10) begin if(!rst_n) begin data_reg <= 0; end else if (start) case({c2,c1,c0}) 3'b000:begin//沒錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b001:begin//校驗(yàn)位hc_in[0]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b010:begin//校驗(yàn)位hc_in[1]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b011:begin//校驗(yàn)位hc_in[0]、hc_in[1]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= ~hdata_reg1[2]; end 3'b100:begin//校驗(yàn)位hc_in[2]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b101:begin//校驗(yàn)位hc_in[0]、hc_in[2]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= ~hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b110:begin//校驗(yàn)位hc_in[1]、hc_in[2]有錯(cuò)誤 data_reg[3] <= hdata_reg1[6]; data_reg[2] <= ~hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end 3'b111:begin//校驗(yàn)位hc_in[1]、hc_in[2]、hc_in[0]有錯(cuò)誤 data_reg[3] <= ~hdata_reg1[6]; data_reg[2] <= hdata_reg1[5]; data_reg[1] <= hdata_reg1[4]; data_reg[0] <= hdata_reg1[2]; end endcase end endmodule
-
FPGA
+關(guān)注
關(guān)注
1625文章
21620瀏覽量
601238 -
通信技術(shù)
+關(guān)注
關(guān)注
20文章
1112瀏覽量
92172 -
擴(kuò)頻系統(tǒng)
+關(guān)注
關(guān)注
0文章
5瀏覽量
5873
原文標(biāo)題:基于FPGA的擴(kuò)頻通信系統(tǒng)設(shè)計(jì)(附代碼)
文章出處:【微信號:HXSLH1010101010,微信公眾號:FPGA技術(shù)江湖】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論