0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

BLDC電機控制和步進(jìn)電機控制的應(yīng)用

指南車機器人科技 ? 來源:技成培訓(xùn) ? 作者:技成培訓(xùn) ? 2022-11-03 16:44 ? 次閱讀

BLDC電機控制算法

無刷電機屬于自換流型(自我方向轉(zhuǎn)換),因此控制起來更加復(fù)雜。

BLDC電機控制要求了解電機進(jìn)行整流轉(zhuǎn)向的轉(zhuǎn)子位置和機制。對于閉環(huán)速度控制,有兩個附加要求,即對于轉(zhuǎn)子速度/或電機電流以及PWM信號進(jìn)行測量,以控制電機速度功率。

BLDC電機可以根據(jù)應(yīng)用要求采用邊排列或中心排列PWM信號。大多數(shù)應(yīng)用僅要求速度變化操作,將采用6個獨立的邊排列PWM信號。這就提供了最高的分辨率。如果應(yīng)用要求服務(wù)器定位、能耗制動或動力倒轉(zhuǎn),推薦使用補充的中心排列PWM信號。

為了感應(yīng)轉(zhuǎn)子位置,BLDC電機采用霍爾效應(yīng)傳感器來提供絕對定位感應(yīng)。這就導(dǎo)致了更多線的使用和更高的成本。無傳感器BLDC控制省去了對于霍爾傳感器的需要,而是采用電機的反電動勢(電動勢)來預(yù)測轉(zhuǎn)子位置。無傳感器控制對于像風(fēng)扇和泵這樣的低成本變速應(yīng)用至關(guān)重要。在采有BLDC電機時,冰箱和空調(diào)壓縮機也需要無傳感器控制。

空載時間的插入和補充

大多數(shù)BLDC電機不需要互補的PWM、空載時間插入或空載時間補償。可能會要求這些特性的BLDC應(yīng)用僅為高性能BLDC伺服電動機、正弦波激勵式BLDC電機、無刷AC、或PC同步電機。

控制算法

許多不同的控制算法都被用以提供對于BLDC電機的控制。典型地,將功率晶體管用作線性穩(wěn)壓器來控制電機電壓。當(dāng)驅(qū)動高功率電機時,這種方法并不實用。高功率電機必須采用PWM控制,并要求一個微控制器來提供起動和控制功能。

控制算法必須提供下列三項功能:

用于控制電機速度的PWM電壓

用于對電機進(jìn)整流換向的機制

利用反電動勢或霍爾傳感器來預(yù)測轉(zhuǎn)子位置的方法

脈沖寬度調(diào)制僅用于將可變電壓應(yīng)用到電機繞組。有效電壓與PWM占空度成正比。當(dāng)?shù)玫竭m當(dāng)?shù)恼鲹Q向時,BLDC的扭矩速度特性與以下直流電機相同??梢杂每勺冸妷簛砜刂齐姍C的速度和可變轉(zhuǎn)矩。

功率晶體管的換向?qū)崿F(xiàn)了定子中的適當(dāng)繞組,可根據(jù)轉(zhuǎn)子位置生成最佳的轉(zhuǎn)矩。在一個BLDC電機中,MCU必須知道轉(zhuǎn)子的位置并能夠在恰當(dāng)?shù)臅r間進(jìn)行整流換向。

BLDC電機的梯形整流換向

對于直流無刷電機的最簡單的方法之一是采用所謂的梯形整流換向。

a72e14d0-5b50-11ed-a3b6-dac502259ad0.jpg

圖1:用于BLDC電機的梯形控制器的簡化框圖

在這個原理圖中,每一次要通過一對電機終端來控制電流,而第三個電機終端總是與電源電子性斷開。

嵌入大電機中的三種霍爾器件用于提供數(shù)字信號,它們在60度的扇形區(qū)內(nèi)測量轉(zhuǎn)子位置,并在電機控制器上提供這些信息。由于每次兩個繞組上的電流量相等,而第三個繞組上的電流為零,這種方法僅能產(chǎn)生具有六個方向共中之一的電流空間矢量。隨著電機的轉(zhuǎn)向,電機終端的電流在每轉(zhuǎn)60度時,電開關(guān)一次(整流換向),因此電流空間矢量總是在90度相移的最接近30度的位置。

a74180a6-5b50-11ed-a3b6-dac502259ad0.jpg

圖2:梯形控制:驅(qū)動波形和整流處的轉(zhuǎn)矩

因此每個繞組的電流波型為梯形,從零開始到正電流再到零然后再到負(fù)電流。

這就產(chǎn)生了電流空間矢量,當(dāng)它隨著轉(zhuǎn)子的旋轉(zhuǎn)在6個不同的方向上進(jìn)行步升時,它將接近平衡旋轉(zhuǎn)。

在像空調(diào)和冰箱這樣的電機應(yīng)用中,采用霍爾傳感器并不是一個不變的選擇。在非聯(lián)繞組中感應(yīng)的反電動勢傳感器可以用來取得相同的結(jié)果。

這種梯形驅(qū)動系統(tǒng)因其控制電路的簡易性而非常普通,但是它們在整流過程中卻要遭遇轉(zhuǎn)矩紋波問題。

BLDC電機的正弦整流換向

梯形整流換向還不足以為提供平衡、精準(zhǔn)的無刷直流電機控制。這主要是因為在一個三相無刷電機(帶有一個正統(tǒng)波反電動勢)中所產(chǎn)生的轉(zhuǎn)矩由下列等式來定義:

轉(zhuǎn)軸轉(zhuǎn)矩= Kt [IRSin(o) + ISSin(o+120) +ITSin(o+240)]

其中:

o為轉(zhuǎn)軸的電角度

Kt為電機的轉(zhuǎn)矩常數(shù)

IR, IS和IT為相位電流

如果相位電流是正弦的:IR = I0Sino; IS = I0Sin (+120o); IT = I0Sin (+240o)

將得到:轉(zhuǎn)軸轉(zhuǎn)矩= 1.5I0*Kt(一個獨立于轉(zhuǎn)軸角度的常數(shù))

正弦整流換向無刷電機控制器努力驅(qū)動三個電機繞組,其三路電流隨著電機轉(zhuǎn)動而平穩(wěn)的進(jìn)行正弦變化。選擇這些電流的相關(guān)相位,這樣它們將會產(chǎn)生平穩(wěn)的轉(zhuǎn)子電流空間矢量,方向是與轉(zhuǎn)子正交的方向,并具有不變量。這就消除了與北形轉(zhuǎn)向相關(guān)的轉(zhuǎn)矩紋波和轉(zhuǎn)向脈沖。

為了隨著電機的旋轉(zhuǎn),生成電機電流的平穩(wěn)的正弦波調(diào)制,就要求對于轉(zhuǎn)子位置有一個精確測量?;魻柶骷H提供了對于轉(zhuǎn)子位置的粗略計算,還不足以達(dá)到目的要求。基于這個原因,就要求從編碼器或相似器件發(fā)出角反饋。

a760c98e-5b50-11ed-a3b6-dac502259ad0.jpg

圖3:BLDC電機正弦波控制器的簡化框圖

由于繞組電流必須結(jié)合產(chǎn)生一個平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個定位相距120度角,因此每個線組的電流必須是正弦的而且相移為120度。采用編碼器中的位置信息來對兩個正弦波進(jìn)行合成,兩個間的相移為120度。然后,將這些信號乘以轉(zhuǎn)矩命令,因此正弦波的振幅與所需要的轉(zhuǎn)矩成正比。結(jié)果,兩個正弦波電流命令得到恰當(dāng)?shù)亩ㄏ?,從而在正交方向產(chǎn)生轉(zhuǎn)動定子電流空間矢量。

正弦電流命令信號輸出一對在兩個適當(dāng)?shù)碾姍C繞組中調(diào)制電流的P-I控制器。第三個轉(zhuǎn)子繞組中的電流是受控繞組電流的負(fù)和,因此不能被分別控制。每個P-I控制器的輸出被送到一個PWM調(diào)制器,然后送到輸出橋和兩個電機終端。應(yīng)用到第三個電機終端的電壓源于應(yīng)用到前兩個線組的信號的負(fù)數(shù)和,適當(dāng)用于分別間隔120度的三個正弦電壓。

結(jié)果,實際輸出電流波型精確的跟蹤正弦電流命令信號,所得電流空間矢量平穩(wěn)轉(zhuǎn)動,在量上得以穩(wěn)定并以所需的方向定位。

一般通過梯形整流轉(zhuǎn)向,不能達(dá)到穩(wěn)定控制的正弦整流轉(zhuǎn)向結(jié)果。然而,由于其在低電機速度下效率很高,在高電機速度下將會分開。這是由于速度提高,電流回流控制器必須跟蹤一個增加頻率的正弦信號。同時,它們必須克服隨著速度提高在振幅和頻率下增加的電機的反電動勢。

由于P-I控制器具有有限增益和頻率響應(yīng),對于電流控制回路的時間變量干擾將引起相位滯后和電機電流中的增益誤差,速度越高,誤差越大。這將干擾電流空間矢量相對于轉(zhuǎn)子的方向,從而引起與正交方向產(chǎn)生位移。

當(dāng)產(chǎn)生這種情況時,通過一定量的電流可以產(chǎn)生較小的轉(zhuǎn)矩,因此需要更多的電流來保持轉(zhuǎn)矩。效率降低。

隨著速度的增加,這種降低將會延續(xù)。在某種程度上,電流的相位位移超過90度。當(dāng)產(chǎn)生這種情況時,轉(zhuǎn)矩減至為零。通過正弦的結(jié)合,上面這點的速度導(dǎo)致了負(fù)轉(zhuǎn)矩,因此也就無法實現(xiàn)。

AC電機控制算法

標(biāo)量控制

標(biāo)量控制(或V/Hz控制)是一個控制指令電機速度的簡單方法

指令電機的穩(wěn)態(tài)模型主要用于獲得技術(shù),因此瞬態(tài)性能是不可能實現(xiàn)的。系統(tǒng)不具有電流回路。為了控制電機,三相電源只有在振幅和頻率上變化。

矢量控制或磁場定向控制

在電動機中的轉(zhuǎn)矩隨著定子和轉(zhuǎn)子磁場的功能而變化,并且當(dāng)兩個磁場互相正交時達(dá)到峰值。在基于標(biāo)量的控制中,兩個磁場間的角度顯著變化。

矢量控制設(shè)法在AC電機中再次創(chuàng)造正交關(guān)系。為了控制轉(zhuǎn)矩,各自從產(chǎn)生磁通量中生成電流,以實現(xiàn)DC機器的響應(yīng)性。

一個AC指令電機的矢量控制與一個單獨的勵磁DC電機控制相似。在一個DC電機中,由勵磁電流IF所產(chǎn)生的磁場能量ΦF與由電樞電流IA所產(chǎn)生的電樞磁通ΦA(chǔ)正交。這些磁場都經(jīng)過去耦并且相互間很穩(wěn)定。因此,當(dāng)電樞電流受控以控制轉(zhuǎn)矩時,磁場能量仍保持不受影響,并實現(xiàn)了更快的瞬態(tài)響應(yīng)。

三相AC電機的磁場定向控制(FOC)包括模仿DC電機的操作。所有受控變量都通過數(shù)學(xué)變換,被轉(zhuǎn)換到DC而非AC。其目標(biāo)的獨立的控制轉(zhuǎn)矩和磁通。

磁場定向控制(FOC)有兩種方法:

直接FOC: 轉(zhuǎn)子磁場的方向(Rotor flux angle) 是通過磁通觀測器直接計算得到的

間接FOC: 轉(zhuǎn)子磁場的方向(Rotor flux angle) 是通過對轉(zhuǎn)子速度和滑差(slip)的估算或測量而間接獲得的。

矢量控制要求了解轉(zhuǎn)子磁通的位置,并可以運用終端電流和電壓(采用AC感應(yīng)電機的動態(tài)模型)的知識,通過高級算法來計算。然而從實現(xiàn)的角度看,對于計算資源的需求是至關(guān)重要的。

可以采用不同的方式來實現(xiàn)矢量控制算法。前饋技術(shù)、模型估算和自適應(yīng)控制技術(shù)都可用于增強響應(yīng)和穩(wěn)定性。

AC電機的矢量控制:深入了解

矢量控制算法的核心是兩個重要的轉(zhuǎn)換: Clark轉(zhuǎn)換,Park轉(zhuǎn)換和它們的逆運算。采用Clark和Park轉(zhuǎn)換,帶來可以控制到轉(zhuǎn)子區(qū)域的轉(zhuǎn)子電流。這種做充許一個轉(zhuǎn)子控制系統(tǒng)決定應(yīng)供應(yīng)到轉(zhuǎn)子的電壓,以使動態(tài)變化負(fù)載下的轉(zhuǎn)矩最大化。

Clark轉(zhuǎn)換:Clark數(shù)學(xué)轉(zhuǎn)換將一個三相系統(tǒng)修改成兩個坐標(biāo)系統(tǒng):

a7734e60-5b50-11ed-a3b6-dac502259ad0.png

其中Ia和Ib正交基準(zhǔn)面的組成部分,Io是不重要的homoplanar部分

a7818962-5b50-11ed-a3b6-dac502259ad0.jpg

圖4:三相轉(zhuǎn)子電流與轉(zhuǎn)動參考系的關(guān)系

a79976bc-5b50-11ed-a3b6-dac502259ad0.jpg

Park轉(zhuǎn)換:Park數(shù)學(xué)轉(zhuǎn)換將雙向靜態(tài)系統(tǒng)轉(zhuǎn)換成轉(zhuǎn)動系統(tǒng)矢量

兩相α, β幀表示通過Clarke轉(zhuǎn)換進(jìn)行計算,然后輸入到矢量轉(zhuǎn)動模塊,它在這里轉(zhuǎn)動角θ,以符合附著于轉(zhuǎn)子能量的d, q幀。根據(jù)上述公式,實現(xiàn)了角度θ的轉(zhuǎn)換。

AC電機的磁場定向矢量控制的基本結(jié)構(gòu)

Clarke變換采用三相電流IA, IB 以及 IC,這兩個在固定座標(biāo)定子相中的電流被變換成Isd 和Isq,成為Park變換d, q中的元素。其通過電機通量模型來計算的電流Isd, Isq 以及瞬時流量角θ被用來計算交流感應(yīng)電機的電動扭矩。

a7ade192-5b50-11ed-a3b6-dac502259ad0.png

圖2:矢量控制交流電機的基本原理

這些導(dǎo)出值與參考值相互比較,并由PI控制器更新。

a7c15312-5b50-11ed-a3b6-dac502259ad0.jpg

基于矢量的電機控制的一個固有優(yōu)勢是,可以采用同一原理,選擇適合的數(shù)學(xué)模型去分別控制各種類型的AC, PM-AC 或者 BLDC電機。

BLDC電機的矢量控制

BLDC電機是磁場定向矢量控制的主要選擇。采用了FOC的無刷電機可以獲得更高的效率,最高效率可以達(dá)到95%,并且對電機在高速時也十分有效率。

步進(jìn)電機控制

a834ab14-5b50-11ed-a3b6-dac502259ad0.jpg

步進(jìn)電機控制通常采用雙向驅(qū)動電流,其電機步進(jìn)由按順序切換繞組來實現(xiàn)。通常這種步進(jìn)電機有3個驅(qū)動順序:

1.單相全步進(jìn)驅(qū)動:

在這種模式中,其繞組按如下順序加電,AB/CD/BA/DC (BA表示繞組AB的加電是反方向進(jìn)行的)。這一順序被稱為單相全步進(jìn)模式,或者波驅(qū)動模式。在任何一個時間,只有一相加電。

2.雙相全步進(jìn)驅(qū)動:

在這種模式中,雙相一起加電,因此,轉(zhuǎn)子總是在兩個極之間。此模式被稱為雙相全步進(jìn),這一模式是兩極電機的常態(tài)驅(qū)動順序,可輸出的扭矩最大。

3.半步進(jìn)模式:

這種模式將單相步進(jìn)和雙相步進(jìn)結(jié)合在一起加電:單相加電,然后雙相加電,然后單相加電…,因此,電機以半步進(jìn)增量運轉(zhuǎn)。這一模式被稱為半步進(jìn)模式,其電機每個勵磁的有效步距角減少了一半,其輸出的扭矩也較低。

以上3種模式均可用于反方向轉(zhuǎn)動(逆時針方向),如果順序相反則不行。

通常,步進(jìn)電機具有多極,以便減小步距角,但是,繞組的數(shù)量和驅(qū)動順序是不變的。

通用DC電機控制算法

通用電機的速度控制,特別是采用2種電路的電機:

相角控制

PWM斬波控制

相角控制

相角控制是通用電機速度控制的最簡單的方法。通過TRIAC的點弧角的變動來控制速度。相角控制是非常經(jīng)濟的解決方案,但是,效率不太高,易于電磁干擾(EMI)。

a84c43fa-5b50-11ed-a3b6-dac502259ad0.png

通用電機的相角控制

以上示圖表明了相角控制的機理,是TRIAC速度控制的典型應(yīng)用。TRIAC門脈沖的周相移動產(chǎn)生了有效率的電壓,從而產(chǎn)生了不同的電機速度,并且采用了過零交叉檢測電路,建立了時序參考,以延遲門脈沖。

PWM斬波控制

PWM控制是通用電機速度控制的,更先進(jìn)的解決方案。在這一解決方案中,功率MOFSET,或者IGBT接通高頻整流AC線電壓,進(jìn)而為電機產(chǎn)生隨時間變化的電壓。

a85c048e-5b50-11ed-a3b6-dac502259ad0.png

通用電機的PWM斬波控制

其開關(guān)頻率范圍一般為10-20 KHz,以消除噪聲。這一通用電機的控制方法可以獲得更佳的電流控制和更佳的EMI性能,因此,效率更高。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電機控制
    +關(guān)注

    關(guān)注

    3523

    文章

    1848

    瀏覽量

    268186
  • 步進(jìn)電機
    +關(guān)注

    關(guān)注

    150

    文章

    3090

    瀏覽量

    147267
  • BLDC
    +關(guān)注

    關(guān)注

    204

    文章

    785

    瀏覽量

    96681

原文標(biāo)題:最全面的電機控制總結(jié),收藏!

文章出處:【微信號:指南車機器人科技,微信公眾號:指南車機器人科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    步進(jìn)電機如何自適應(yīng)控制步進(jìn)電機如何細(xì)分驅(qū)動控制?

    步進(jìn)電機是一種將電脈沖信號轉(zhuǎn)換為角位移或線位移的電機,廣泛應(yīng)用于各種自動化控制系統(tǒng)中。為了提高步進(jìn)電機
    的頭像 發(fā)表于 10-23 10:04 ?243次閱讀

    步進(jìn)電機轉(zhuǎn)速怎么控制高低

    步進(jìn)電機是一種將電脈沖信號轉(zhuǎn)換為角位移或線位移的開環(huán)控制元件。在非超載的情況下,電機的轉(zhuǎn)速、停止的位置只取決于脈沖信號的頻率和脈沖數(shù),而不受負(fù)載變化的影響,當(dāng)
    的頭像 發(fā)表于 10-22 15:55 ?256次閱讀

    步進(jìn)電機控制技術(shù)及發(fā)展概況有哪些?

    步進(jìn)電機是一種將電脈沖信號轉(zhuǎn)換為角位移或線位移的執(zhí)行元件,廣泛應(yīng)用于各種自動化控制系統(tǒng)中。步進(jìn)電機控制
    的頭像 發(fā)表于 10-22 11:50 ?149次閱讀

    步進(jìn)電機伺服控制系統(tǒng)的作用

    步進(jìn)電機伺服控制系統(tǒng)是一種精密的電機控制系統(tǒng),它通過精確控制
    的頭像 發(fā)表于 09-04 09:46 ?547次閱讀

    步進(jìn)電機控制原理與應(yīng)用實例

    步進(jìn)電機,作為一種特殊的電機類型,在現(xiàn)代工業(yè)控制系統(tǒng)中占據(jù)著重要的地位。其獨特的控制方式和廣泛的應(yīng)用領(lǐng)域,使得
    的頭像 發(fā)表于 06-25 14:34 ?728次閱讀

    步進(jìn)電機控制器電路圖 步進(jìn)電機控制器的分類及其特點

      步進(jìn)電機控制器是一種專門用于控制步進(jìn)電機的設(shè)備,它通過發(fā)出脈沖信號來驅(qū)動
    的頭像 發(fā)表于 06-24 17:12 ?2574次閱讀
    <b class='flag-5'>步進(jìn)</b><b class='flag-5'>電機</b><b class='flag-5'>控制</b>器電路圖 <b class='flag-5'>步進(jìn)</b><b class='flag-5'>電機</b><b class='flag-5'>控制</b>器的分類及其特點

    什么是步進(jìn)電機控制器?步進(jìn)電機控制器電路圖

    步進(jìn)電機控制器是一種專門用于控制步進(jìn)電機運行的裝置。步進(jìn)
    的頭像 發(fā)表于 06-20 16:14 ?1412次閱讀
    什么是<b class='flag-5'>步進(jìn)</b><b class='flag-5'>電機</b><b class='flag-5'>控制</b>器?<b class='flag-5'>步進(jìn)</b><b class='flag-5'>電機</b><b class='flag-5'>控制</b>器電路圖

    步進(jìn)電機控制系統(tǒng)是什么意思

    步進(jìn)電機控制系統(tǒng),作為現(xiàn)代工業(yè)自動化和精密控制領(lǐng)域的重要組成部分,其工作原理和實現(xiàn)方式一直受到廣泛關(guān)注。步進(jìn)
    的頭像 發(fā)表于 06-18 18:12 ?821次閱讀

    BLDC電機控制算法詳解

    無刷直流電機(Brushless DC Motor,簡稱BLDC電機)以其高效率、高可靠性和低噪音等特點,在工業(yè)、家電和汽車等領(lǐng)域得到了廣泛應(yīng)用。為了實現(xiàn)BLDC
    的頭像 發(fā)表于 06-14 10:49 ?827次閱讀

    步進(jìn)電機通過什么控制轉(zhuǎn)動角度

    步進(jìn)電機是一種電磁驅(qū)動的旋轉(zhuǎn)電機,它具有精確控制轉(zhuǎn)動角度的特性。步進(jìn)電機的工作原理是通過改變線圈
    的頭像 發(fā)表于 06-12 09:49 ?1178次閱讀

    什么是步進(jìn)電機的細(xì)分控制步進(jìn)電機為什么要細(xì)分,如何細(xì)分?

    什么是步進(jìn)電機的細(xì)分控制?步進(jìn)電機為什么要細(xì)分,如何細(xì)分? 步進(jìn)
    的頭像 發(fā)表于 02-18 09:39 ?6875次閱讀

    arduino控制步進(jìn)電機代碼

    Arduino是一種開放源代碼的電路板平臺,它可以用于控制各種不同的電子設(shè)備,包括步進(jìn)電機。步進(jìn)電機是一種電動機,可以通過下達(dá)特定的指令來
    的頭像 發(fā)表于 02-14 16:29 ?1840次閱讀

    步進(jìn)電機控制方法 步進(jìn)電機和伺服電機的區(qū)別

    步進(jìn)電機控制方法 步進(jìn)電機是一種將電信號轉(zhuǎn)化為機械轉(zhuǎn)動的電動機,其輸出轉(zhuǎn)角是按照電脈沖控制信號的
    的頭像 發(fā)表于 01-22 17:18 ?1077次閱讀

    步進(jìn)電機控制方法 步進(jìn)電機控制器參數(shù)設(shè)置

    步進(jìn)電機是一種在控制系統(tǒng)中常見的電機類型,它以步進(jìn)角度為單位進(jìn)行旋轉(zhuǎn),并且可以精確控制位置和速度
    的頭像 發(fā)表于 01-19 10:50 ?2616次閱讀

    步進(jìn)電機控制方法及需要哪些控制信號

    步進(jìn)電機是一種將電子信號轉(zhuǎn)化為機械運動的電動機,廣泛應(yīng)用于機器人、打印機、數(shù)碼相機等領(lǐng)域。步進(jìn)電機由于其精度高、固有扭矩大、容易控制等特點,
    的頭像 發(fā)表于 12-20 11:21 ?3152次閱讀