0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

唯樣商城 | 非隔離型變換器電磁干擾(EMI)的分析與建模方法

王地虎 ? 來源:王地虎 ? 作者:王地虎 ? 2022-11-25 16:19 ? 次閱讀

對于工程師朋友們來說,EMI問題往往有很多的不確定性,有可能設(shè)計到了最后的階段,EMI反而難以滿足需求。

而對EMI問題的建模分析,會極為有效的幫助我們進行EMI的設(shè)計和優(yōu)化,甚至從設(shè)計之初,就可以對EMI進行預(yù)測。

EMI分傳導(dǎo)和輻射兩部分,傳導(dǎo)EMI噪聲可通過纜線或其他導(dǎo)體傳到受害設(shè)備,輻射EMI噪聲則是直接通過空間耦合到受害設(shè)備上。

這兩種噪聲因為傳播途徑的不同,建模和分析方法則需要分別來進行探討。

傳導(dǎo)EMI

那傳導(dǎo)EMI怎么來分析?

我們一般把它分為兩種:差模和共模。

差模噪聲(DM)主要在兩條線間流動,而共模電流則可通過設(shè)備對地的雜散電容以位移電流的形式流到地上,再流回電網(wǎng)。

因為這兩種噪聲的傳播途徑和抑制機理不同,我們需要分別進行建模分析。

另外,在測量中,我們可以使用噪聲分離器來得到它們(如圖1所示),據(jù)此就可知道造成EMI超標(biāo)的原因到底是差模還是共模噪聲。

fda8e93e54f042f18d02e4be75cdfe99~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=ylNSEo17LmJsIUuxmAlUB7O%2FRy0%3D

圖1 傳導(dǎo)EMI中的共模和差模噪聲

在傳導(dǎo)EMI的分析建模中,首先要做的就是把差模和共模路徑畫出來,并分別進行分析。

圖2即為一個Buck電路的共模與差模路徑。其中,LF和CF代表輸入濾波器的電感和電容。CP和CPO分別代表開關(guān)節(jié)點和EVB板的地對測試參考地的雜散電容。

9627128582234164a54b4e2febb8489e~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=Nya4aovyy6ph1kE2d%2FM78M5ntGQ%3D

圖2 Buck電路傳導(dǎo)EMI中的共模和差模路徑

對于不同的路徑來說,EMI建模的第一步是根據(jù)替代定理,把開關(guān)用電流源或電壓源進行等效。以Buck電路的差模分析為例,等效之后,電路各處的電流和電壓依然不變(如圖3a所示)。

然后可以使用疊加定理來具體分析每一個源的影響(如圖3b所示),由于只有經(jīng)過LISN的電流才會成為EMI噪聲,因此我們可以忽略不產(chǎn)生EMI噪聲的源(如圖3b中的VS2)。

最終,如圖4所示,我們就得到了差模噪聲模型??梢园l(fā)現(xiàn),Buck的差模噪聲源即為上管電流,從模型上來看,輸入差模噪聲的抑制可以通過選擇輸入電容以及輸入濾波器來實現(xiàn)。

375ea3d2a7264dfcb32d72a46f08f768~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=hyVDwY9W0JyVYKVxlccN2YODPmU%3D

f20ad1f3a138427d8dd86c9bb57b824f~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=M98ZiruoEs2m6z5JG6RKN7CzmsE%3D

圖3 使用替代定理和疊加定理對差模噪聲進行建模分析

495e141b5561493b8ba7a3ef1f1928d7~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=F1Z%2BGpZ5GhZDYfHa7VidEZnT%2FZ8%3D

圖4 Buck變換器的差模噪聲模型

同理,如圖5,圖6所示,Buck電路的共模模型也可以使用類似的方法進行分析。在共模分析中,由于輸入,輸出電容(如CIN,COUT)的阻抗遠小于CP和CPO,在分析時,可以認為它們是短路的。

從圖6可以看出,對于Buck來說,共模噪聲的抑制則可以通過減小CP來實現(xiàn),具體的做法包括減小開關(guān)節(jié)點面積、對開關(guān)節(jié)點進行屏蔽等等。

467a4302aa2b49a2a3d0f584d24a5a20~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=AmBrAvJD2j8B5ftkSrIdF9tBWLY%3D

29caf28741104747a26bd492b81aca93~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=ky7%2FfyI%2FMP4khsm8B2DVDK9iC3A%3D

圖5 使用替代定理和疊加定理對共模噪聲進行建模分析

64ad6f12890a416fb0f7e4faea3f6039~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=ThG%2FaFw%2FenLSVO0RMR5jluHwvaQ%3D

圖6 Buck變換器的共模噪聲模型

值得一提的是,以上的分析方法也適用于其他的非隔離變換器,如Boost、Buck-Boost等。

到了這一步,我們就有了基本的EMI模型了,但是如果想要準(zhǔn)確預(yù)測高頻率的EMI(如30MHz以上),我們往往需要考慮各個元件的寄生參數(shù)的影響。

圖7a展示了常見的EMI被動元件,圖7b和7c則分別是電容和電感的高頻阻抗模型。在很高的頻率下,電容往往會體現(xiàn)出電感的特性,電感也會體現(xiàn)出電阻或者是電容的特性。

662e1f4fc0684960afacfee0c085ae06~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=3YianW5elYDAxB5Uk0EmyjvbpZ8%3D

a

9d4ed6a13c17433ebf1e8cc07e2f6f73~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=GQezkB1d8CBsrRjX%2FdxXQ3f5f3Q%3D

b

95991998cb244717b45400838ebf9874~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=gJGhUuckL4Z45TDoiiQUHlNfCFA%3D

c

圖7 (a)常見EMI元件(b)電容的高頻等效模型(c)電感的高頻等效模型

那么我們?nèi)绾蔚玫紼MI元件的各個雜散參數(shù)呢?

一般來說,我們可以從供應(yīng)商處得到,如果供應(yīng)商無法提供,我們也可以通過阻抗分析儀或者是網(wǎng)絡(luò)分析儀進行測量。

以一個電感為例,圖8即為測量得到的阻抗曲線。由于在不同頻段,對阻抗有決定性影響的參數(shù)也不同,因此,通過在不同頻段取點計算,即可分別得到各個雜散參數(shù)。

5174cfda12ba49f8a0c64365605edd0f~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=w92l2WWn2K9K9%2F5pNq4G22%2FcUgU%3D

圖8 電感的阻抗曲線測量結(jié)果

分析高頻EMI的時候,PCB走線產(chǎn)生的電感往往不能忽略,在EMI建模的時候也要加以考慮。阻抗分析儀或者網(wǎng)絡(luò)分析儀不僅可以幫助測量EMI元件,也可以幫助提取PCB板上面的雜散參數(shù)。

在我們得到EMI元件和PCB雜散參數(shù)后,我們就可以改進圖2所示的模型,并進行仿真了。開關(guān)上的電壓和電流既可以通過實際提取得到,也可以在仿真中使用開關(guān)或者IC的模型進行模擬

2b5608bce31840ba9057768039388bf9~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=AjvJ89Zkxrp%2BN387EI%2BqG2SXS3s%3D

圖9 利用仿真軟件進行EMI預(yù)測

如圖10所示,在準(zhǔn)確提取EMI元件和PCB阻抗的前提下,EMI仿真可以較為準(zhǔn)確地預(yù)測一個變換器的傳導(dǎo)EMI結(jié)果。

feccfd9dc52040fcaa9782db9a8a27ee~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=JjkRY0fcDo5KNxthJGgikrzT1Nw%3D

圖10 EMI仿真結(jié)果與實際測量對比

輻射EMI

對于輻射EMI來說,傳統(tǒng)手段是使用電磁場理論進行推導(dǎo)和分析,然而,對于工程應(yīng)用和建模來講,繁復(fù)的公式推導(dǎo)對于理解和解決EMI問題幫助是有限的,而一個有明確物理意義的電路模型將更有幫助。

如下圖所示,輻射EMI可以認為主要通過輸入線和輸出線組成的偶級子天線向空間輻射,而其驅(qū)動源則為變換器本身的共模噪聲源。

因此,變換器本身可以通過戴維南定理等效為一個電壓源和它的串聯(lián)阻抗,而天線則使用三個阻抗來分別表示其自身損耗,向外輻射的能量,以及儲存的近場能量。

我們將從變換器和天線兩個方面進行分析。

ffa9c222aa744b44aba76504b3d79db6~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=btvC3DUrer3y9RHNDEUFZJhLTGI%3D

圖11 輻射EMI的產(chǎn)生機理與模型

對于變換器來說,顯然,變換器的源越小,輻射的能量也就越小。

如下圖所示,理想狀況下,對于非隔離性變換器來說,輸入與輸出地之間沒有阻抗,而等效的源(VCM)為零,也就不會產(chǎn)生EMI輻射。

但實際上,由于地之間的PCB走線會產(chǎn)生電感,輸入端(P1)與輸出端(P3)之間也會產(chǎn)生壓降,這樣就導(dǎo)致了輻射EMI的產(chǎn)生。

8e052f0c193242f99d61620b13433bb9~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=ylxdhir4jnqDHaMg%2BjWyAtBtNOY%3D

圖12 理想與實際Buck-Boost變換器電路模型

據(jù)此,我們可以進行EMI建模,這部分的原理和傳導(dǎo)分析是一致的。

首先使用電壓源(VSW)和電流源(ID)對開關(guān)等效,并使用疊加定理分別分析它們的影響。

如圖13所示,我們發(fā)現(xiàn)電壓源和電流源都會產(chǎn)生輻射噪聲。

f9306c9f7a1c434cbd614c041e339e9a~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=eiWPw1ESr7IgGR0yr3CXOPI0RfU%3D

圖13 Buck-Boost變換器輻射EMI的噪聲源:(a)電壓源(b)電流源

而根據(jù)模型,我們可以得到各個源對變換器等效源的傳遞函數(shù)。

在實驗中,用示波器可以測量電壓源、電流源的大小;用阻抗分析儀可以測量模型中各個阻抗的大??;再進行計算即可預(yù)測等效源的大小。

如下圖所示,預(yù)測值與實際測量的等效源的值相符。模型的合理性即得到證明。

d61418523cbf4324b4cce5dfb2b50584~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=fHnAizie%2BssJrArTd%2BiBo0WrDYU%3D

圖14 預(yù)測與實際測量的Buck-Boost變換器等效源

另一方面,對于天線來說,由于在測試中,線束長度往往是確定的,我們可以根據(jù)某個標(biāo)準(zhǔn)下EMI測試中的線束長度和擺放方式,來測量得到它的天線增益。

結(jié)合我們之前得到的變換器等效源與等效阻抗,我們即可預(yù)測實際的輻射EMI噪聲。圖15a展示了預(yù)測的流程和方法,圖15b則是預(yù)測結(jié)果和實際結(jié)果的比較。可以看出,兩者有很好的吻合度。

7125bdfabd9448b9a1a7d68bc5fde0fe~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669969118&x-signature=I7Uh7zNF5bwawtnAbMdIwG5WcNE%3D

圖15 (a)輻射噪聲預(yù)測流程與方法(b)輻射噪聲預(yù)測與實際測量的EMI對比

在本文中,我們分享了非隔離變換器傳導(dǎo)與輻射EMI的建模方法,并以Buck變換器和Buck-boost變換器作為例子進行了演示。而根據(jù)EMI模型,我們既可以分析如何降噪,也可以通過仿真直接對EMI進行預(yù)測,以幫助我們進行EMI設(shè)計。

審核編輯黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • emi
    emi
    +關(guān)注

    關(guān)注

    53

    文章

    3545

    瀏覽量

    126762
  • 變換器
    +關(guān)注

    關(guān)注

    17

    文章

    2072

    瀏覽量

    108935
收藏 人收藏

    評論

    相關(guān)推薦

    何為電磁干擾(EMI)掃描儀,哪里需要它?

    什么是電磁干擾掃描儀?電磁干擾掃描儀(Electromagneticinterferencescanner)又稱EMI掃描儀,是屬于
    的頭像 發(fā)表于 08-30 13:02 ?131次閱讀
    何為<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>(<b class='flag-5'>EMI</b>)掃描儀,哪里需要它?

    拓撲篇丨LLC諧振變換器仿真建模與控制策略分析

    。 上期內(nèi)容中我們對 LLC諧振變換器的電路結(jié)構(gòu)與工作原理 進行了分析,了解到變換器最為常用的調(diào)制方式為脈沖頻率調(diào)制(PFM)。今天繼續(xù)為大家分享 LLC諧振變換器的仿真
    發(fā)表于 08-12 16:23

    雙有源橋變換器簡介和仿真案例分析

    雙有源橋變換器是一種高效的隔離式雙向DC-DC變換器,它的開關(guān)信號的占空比為50%。可以應(yīng)用于電動汽車、超級電容或者電池儲能等領(lǐng)域。
    的頭像 發(fā)表于 07-23 15:36 ?323次閱讀
    雙有源橋<b class='flag-5'>變換器</b>簡介和仿真案例<b class='flag-5'>分析</b>

    拓撲篇丨LLC諧振變換器仿真建模與控制策略分析

    。上期內(nèi)容中我們對 LLC諧振變換器的電路結(jié)構(gòu)與工作原理進行了分析,了解到變換器最為常用的調(diào)制方式為脈沖頻率調(diào)制(PFM)。今天繼續(xù)為大家分享 LLC諧振變換器的仿真
    發(fā)表于 07-19 10:17

    LLC諧振變換器仿真建模與控制策略分析

    。上期內(nèi)容中我們對LLC諧振變換器的電路結(jié)構(gòu)與工作原理進行了分析,了解到變換器最為常用的調(diào)制方式為脈沖頻率調(diào)制(PFM)。今天繼續(xù)為大家分享LLC諧振變換器的仿真
    的頭像 發(fā)表于 07-19 08:23 ?941次閱讀
    LLC諧振<b class='flag-5'>變換器</b>仿真<b class='flag-5'>建模</b>與控制策略<b class='flag-5'>分析</b>

    深圳比創(chuàng)達電子EMC|EMI電磁干擾廠家:如何專業(yè)解決電磁干擾問題.

    深圳比創(chuàng)達電子EMC|EMI電磁干擾廠家:如何專業(yè)解決電磁干擾問題在當(dāng)今科技日新月異的時代,電磁
    發(fā)表于 05-13 11:34

    EMI電磁干擾廠家:如何專業(yè)解決電磁干擾問題

    深圳比創(chuàng)達電子EMC|EMI電磁干擾廠家:如何專業(yè)解決電磁干擾問題
    的頭像 發(fā)表于 05-13 11:28 ?341次閱讀
    <b class='flag-5'>EMI</b><b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>廠家:如何專業(yè)解決<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>問題

    EMI電磁干擾EMI電磁干擾的識別與解決之道

    深圳比創(chuàng)達EMC|EMI電磁干擾EMI電磁干擾的識別與解決之道
    的頭像 發(fā)表于 04-25 11:17 ?576次閱讀
    <b class='flag-5'>EMI</b><b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>:<b class='flag-5'>EMI</b><b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>的識別與解決之道

    EMC與EMI電磁兼容與電磁干擾的原理與影響

    深圳比創(chuàng)達電子EMC|EMC與EMI電磁兼容與電磁干擾的原理與影響
    的頭像 發(fā)表于 04-09 10:46 ?570次閱讀

    解密EMC與EMI電磁兼容性與電磁干擾?

    解密EMC與EMI電磁兼容性與電磁干擾?|深圳比創(chuàng)達電子
    的頭像 發(fā)表于 03-29 10:32 ?1254次閱讀
    解密EMC與<b class='flag-5'>EMI</b>:<b class='flag-5'>電磁</b>兼容性與<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>?

    EMI電磁干擾):原理、影響與應(yīng)對措施?

    EMI電磁干擾):原理、影響與應(yīng)對措施?|深圳比創(chuàng)達電子EMC
    的頭像 發(fā)表于 03-26 11:22 ?890次閱讀
    <b class='flag-5'>EMI</b>(<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>):原理、影響與應(yīng)對措施?

    EMI電磁干擾:原理、影響及解決方法詳解?

    EMI電磁干擾:原理、影響及解決方法詳解?|深圳比創(chuàng)達電子
    的頭像 發(fā)表于 03-21 10:02 ?690次閱讀
    <b class='flag-5'>EMI</b><b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>:原理、影響及解決<b class='flag-5'>方法</b>詳解?

    DC-DC_升壓穩(wěn)壓變換器設(shè)計

    DC-DC功率變換器的種類很多。按照輸入/輸出電路是否隔離來分,可分為隔離隔離
    發(fā)表于 01-30 11:45 ?5次下載

    如何抑制MEI電磁干擾傳導(dǎo)?如何選擇EMI濾波

    如何抑制MEI電磁干擾傳導(dǎo)?如何選擇EMI濾波? 抑制電磁干擾(MEI)傳導(dǎo)是一項非常關(guān)鍵的任
    的頭像 發(fā)表于 11-29 11:03 ?720次閱讀