0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于碳化硅(SiC)的MOSFET可實現(xiàn)更高效率水平

儒卓力 ? 來源:儒卓力 ? 作者:Hannah Metzner和René ? 2022-12-01 10:23 ? 次閱讀

相比基于硅(Si)的MOSFET,基于碳化硅(SiC)的MOSFET器件可實現(xiàn)更高的效率水平,但有時難以輕易決定這項技術(shù)是否更好的選擇。本文將闡述需要考慮哪些標(biāo)準(zhǔn)因素。

超過 1000 V 電壓的應(yīng)用通常使用IGBT解決方案。但現(xiàn)在的SiC 器件性能卓越,能夠?qū)崿F(xiàn)快速開關(guān)的單極組件,可替代雙極 IGBT。這些SiC器件可以在較高的電壓下實施先前僅僅在較低電壓 (<600 V) 下才可行的應(yīng)用。與雙極 IGBT 相比,這些基于 SiC 的 MOSFET 可將功率損耗降低多達(dá) 80%。

英飛凌進(jìn)一步優(yōu)化了 SiC器件的優(yōu)勢特性——通過使用CoolSiC Trench 技術(shù),可以實現(xiàn)具有極高閾值電壓 (Vth) 和低米勒電容的 MOSFET器件。相比其他 SiC MOSFET ,它們對于不良的寄生導(dǎo)通效應(yīng)更具彈性。除了 1200 V 和 1700 V 型號之外,英飛凌還擴(kuò)展了產(chǎn)品組合,加入了650 V CoolSiC MOSFET,該器件也可用于 230 V 電源應(yīng)用。這些SiC器件具有更高的系統(tǒng)效率和穩(wěn)健性,以及更低的系統(tǒng)成本,適用于電信、服務(wù)器、電動汽車充電站和電池組等應(yīng)用。

如果在基于Si的成熟MOSFET技術(shù),和基于 SiC 的較新 MOSFET之間進(jìn)行選擇,需要考慮多種因素。

應(yīng)用效率和功率密度

與Si器件相比,SiC器件的RDSon在工作溫度范圍內(nèi)不易發(fā)生波動。使用基于 SiC 的 MOSFET,RDSon 數(shù)值在 25°C到100°C溫度之間僅僅偏移大約 1.13 倍,而使用典型的基于Si MOSFET(例如英飛凌的 CoolMOSTM C7器件)時,RDSon 則會偏移1.67 倍。這表明針對基于SiC 的 MOSFET器件,工作溫度對于功率損耗的影響要小得多,因而可以采用高得多的工作溫度。因此,基于 SiC 的 MOSFET 非常適合高溫應(yīng)用,或者可以使用較簡單的冷卻解決方案來實現(xiàn)相同的效率水平。

d2a918e8-709b-11ed-8abf-dac502259ad0.png

圖片來源:儒卓力

與 IGBT 相比,基于 SiC 的 MOSFET 具有較低的電導(dǎo)損耗以及可降低多達(dá) 80% 的開關(guān)損耗。(在使用英飛凌650 V CoolSiC MOSFET的示例中)

驅(qū)動器

當(dāng)從Si轉(zhuǎn)換到SiC時,其中一個問題是選擇合適的驅(qū)動器。如果基于Si的 MOSFET 驅(qū)動器產(chǎn)生的最高柵極導(dǎo)通電壓不超過15 V,它們通??梢岳^續(xù)使用。然而,高達(dá) 18 V柵極導(dǎo)通電壓可以進(jìn)一步顯著降低電阻 RDSon(在 60°C 時可降低多達(dá) 18%),因此,值得考慮改用其它驅(qū)動器。

另外還建議避免在柵極處出現(xiàn)負(fù)電壓,因為這會導(dǎo)致 VGS(th)發(fā)生偏移,從而使 RDSon 隨著工作時間延長而增加。在柵極驅(qū)動環(huán)路中,源極電感上的電壓降導(dǎo)致高 di/dt,這可能引起負(fù)VGS(off)電平。很高的 dv/dts 帶來了更大的挑戰(zhàn),這是由于半橋配置中第二個開關(guān)的柵極漏極電容引起的??梢酝ㄟ^降低 dv/dt 來避免這個問題,但代價是效率的下降。

限制負(fù)柵極電壓的最佳方法是通過開爾文源極概念使用單獨的電源和驅(qū)動器電路,并集成二極管鉗位。位于開關(guān)的柵極和源極之間的二極管鉗位限制柵極出現(xiàn)負(fù)電壓。

反向恢復(fù)電荷 Qrr

特別針對使用導(dǎo)通體二極管進(jìn)行連續(xù)硬換向的諧振拓?fù)浠蛟O(shè)計,還必須考慮反向恢復(fù)電荷 Qrr。當(dāng)二極管不再導(dǎo)電時,這是必須從集成的體二極管中去除的電荷(存在于所有二極管中)。各組件制造商都做出了巨大的努力,以便盡可能地降低這種電荷。英飛凌的“Fast Diode CoolMOS”系列就是這些努力成果的示例。它們具有更快速的體二極管,與前代產(chǎn)品相比,可以將 Qrr 降低 10 倍。英飛凌的 CoolSiC 系列在這方面取得了進(jìn)步,與最新的 CoolMOS 組件相比,這些SiC MOSFET 實現(xiàn)了10 倍的性能改進(jìn)。

d2d460e8-709b-11ed-8abf-dac502259ad0.png

Trench 技術(shù)極大程度地減少了使用中的功率損耗,并提供了極高的運行可靠性。

采用CoolSiC技術(shù),用戶可以開發(fā)具有更少組件和磁性元件及散熱器的系統(tǒng),從而簡化系統(tǒng)設(shè)計,并減低體積和成本。借助Trench 技術(shù),這些組件還保證達(dá)到極低的使用損耗和極高的運行可靠性。

功率因數(shù)校正 (PFC)

目前行業(yè)的重點是提高系統(tǒng)效率。為了實現(xiàn)至少 98% 的效率數(shù)值,業(yè)界針對功率因數(shù)校正 (PFC)付出了很多努力。具備優(yōu)化 Qrr 的 基于SiC MOSFET 有助于實現(xiàn)這一目標(biāo)。它們可以實現(xiàn)用于PFC的硬開關(guān)半橋/全橋拓?fù)?。針對CoolMOS 技術(shù),英飛凌先前推薦“三角電流模式(Triangular Current Mode)”方法,但使用 SiC 器件可以實現(xiàn)具有連續(xù)導(dǎo)通模式的圖騰柱 PFC。

輸出電容 COSS

在硬開關(guān)拓?fù)渲斜仨毾拇鎯Φ哪芰?EOSS;對于最新的 CoolMOS型款,這種能量通常較大。然而,與圖騰柱 PFC 的導(dǎo)通損耗相比,它仍然相對較低,因此可以忽略不計,至少初期如此。較低的電容意味著可以從更快的開關(guān)速度中受益,但這也可能引起導(dǎo)通期間的漏極源極電壓過沖 (VDS)。

針對基于Si的 MOSFET,可以通過使用外部柵極電阻加以補償,以降低開關(guān)速率,并且在漏源處實現(xiàn)所需的 80% 電壓降額。這種解決方案的缺點是增加電流會導(dǎo)致更多開關(guān)損耗,尤其是在關(guān)斷期間。

在50 V漏源電壓下,基于 SiC 的 MOSFET 的輸出電容要大于可比較的基于 Si 的功率半導(dǎo)體器件,但 COSS/VDS 的關(guān)系更加線性。其結(jié)果是,相比基于 Si 的MOSFET型款,基于 SiC 的 MOSFET 允許在相同的電路中使用較低的外部電阻,而不會超出最大漏源電壓。這在某些電路拓?fù)渲惺怯欣?,例如?LLC 諧振 DC/DC 轉(zhuǎn)換器中,可以省去額外的柵極電阻器。

結(jié)論

盡管SiC技術(shù)擁有諸多優(yōu)勢,但基于Si的 MOSFET不一定會過時。部分原因是由于體二極管的閾值電壓要高得多,直接使用基于 SiC 的型款來替換基于 Si 的 MOSFET,將會導(dǎo)致體二極管的功率損耗增加四倍,基本上抵消了效率增益。如要真正受益于基于 SiC 的 MOSFET 的更高效率,必須在 MOSFET 通道上使用 PFC 的升壓功能,而不是在體二極管上反向使用。還必須優(yōu)化死區(qū)時間性能,以充分利用基于 SiC 的 MOSFET 的優(yōu)勢。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    142

    文章

    6936

    瀏覽量

    211754
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    29

    文章

    2654

    瀏覽量

    62091

原文標(biāo)題:Si對比SiC MOSFET 改變技術(shù)—是正確的做法

文章出處:【微信號:儒卓力,微信公眾號:儒卓力】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    碳化硅MOSFET的開關(guān)尖峰問題與TVS保護(hù)方案

    在電力電子領(lǐng)域,碳化硅SiCMOSFET因其高效率、高頻率和高溫性能而備受青睞。然而,即使性能卓越,SiC
    的頭像 發(fā)表于 08-15 17:17 ?1695次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的開關(guān)尖峰問題與TVS保護(hù)方案

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff

    第二代SiC碳化硅MOSFET關(guān)斷損耗Eoff
    的頭像 發(fā)表于 06-20 09:53 ?278次閱讀
    第二代<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>關(guān)斷損耗Eoff

    碳化硅(SiC)功率器件的開關(guān)性能比較

    過去十年,碳化硅(SiC)功率器件因其在功率轉(zhuǎn)換器中的高功率密度和高效率而備受關(guān)注。制造商們已經(jīng)開始采用碳化硅技術(shù)來開發(fā)基于各種半導(dǎo)體器件的功率模塊,如雙極結(jié)晶體管(BJT)、結(jié)型場效
    的頭像 發(fā)表于 05-30 11:23 ?409次閱讀
    <b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)功率器件的開關(guān)性能比較

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅(qū)動器研究

    由于碳化硅SiCMOSFET具有高頻、低損耗、高耐溫特性,在提升新能源汽車逆變器效率和功率密度方面具有巨大優(yōu)勢。對于SiC
    發(fā)表于 05-14 09:57

    SIC 碳化硅認(rèn)識

    1:什么是碳化硅 碳化硅SiC)又叫金剛砂,它是用石英砂、石油焦、木屑、食鹽等原料通過電阻爐高溫冶煉而成,其實碳化硅很久以前就被發(fā)現(xiàn)了,它的特點是:化學(xué)性能穩(wěn)定、導(dǎo)熱系數(shù)高、熱膨脹系
    的頭像 發(fā)表于 04-01 10:09 ?644次閱讀
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>認(rèn)識

    碳化硅壓敏電阻 - 氧化鋅 MOV

    。碳化硅壓敏電阻的主要特點自我修復(fù)。用于空氣/油/SF6 環(huán)境??膳渲脼閱蝹€或模塊化組件。極高的載流量。高浪涌能量等級。100% 活性材料。重復(fù)的非線性特性。耐高壓?;旧鲜菬o感的。碳化硅圓盤壓敏電阻每個
    發(fā)表于 03-08 08:37

    碳化硅功率器件的基本原理、性能優(yōu)勢、應(yīng)用領(lǐng)域

    碳化硅功率器件主要包括碳化硅二極管(SiC Diode)、碳化硅晶體管(SiC Transistor)等。這些器件通過利用
    發(fā)表于 02-29 14:23 ?1399次閱讀

    一文了解SiC碳化硅MOSFET的應(yīng)用及性能優(yōu)勢

    共讀好書 碳化硅是第三代半導(dǎo)體產(chǎn)業(yè)發(fā)展的重要基礎(chǔ)材料,碳化硅功率器件以其優(yōu)異的耐高壓、耐高溫、低損耗等性能,能夠有效滿足電力電子系統(tǒng)的高效率、小型化和輕量化要求。 碳化硅
    的頭像 發(fā)表于 02-21 18:24 ?1130次閱讀
    一文了解<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的應(yīng)用及性能優(yōu)勢

    SiC碳化硅MOSFET的應(yīng)用及性能優(yōu)勢

    碳化硅是第三代半導(dǎo)體產(chǎn)業(yè)發(fā)展的重要基礎(chǔ)材料,碳化硅功率器件以其優(yōu)異的耐高壓、耐高溫、低損耗等性能,能夠有效滿足電力電子系統(tǒng)的高效率、小型化和輕量化要求。
    的頭像 發(fā)表于 01-20 17:18 ?855次閱讀
    <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的應(yīng)用及性能優(yōu)勢

    碳化硅功率器件的優(yōu)勢應(yīng)及發(fā)展趨勢

    的優(yōu)勢高頻率:碳化硅材料的電子遷移率比硅高,使得碳化硅功率器件能夠承受更高的開關(guān)頻率。這有助于減小無源元件的尺寸,提高系統(tǒng)的整體效率。低損耗:碳化硅
    的頭像 發(fā)表于 01-06 14:15 ?618次閱讀

    功率電子器件從硅(Si)到碳化硅SiC)的過渡

    眾所周知,硅(Si)材料及其基礎(chǔ)上的技術(shù)方向曾經(jīng)改變了世界。硅材料從沙子中提煉,構(gòu)筑了遠(yuǎn)比沙土城堡更精密復(fù)雜的產(chǎn)品。如今,碳化硅SiC)材料作為一種衍生技術(shù)進(jìn)入了市場——相比硅材料,它可以實現(xiàn)
    的頭像 發(fā)表于 12-21 10:55 ?524次閱讀

    碳化硅MOSFET在高頻開關(guān)電路中的應(yīng)用優(yōu)勢

    ,從而具有較高的導(dǎo)電能力和熱導(dǎo)率。相比傳統(tǒng)的硅MOSFET,在高溫環(huán)境下,碳化硅MOSFET表現(xiàn)更加出色。這意味著碳化硅MOSFET能夠在高
    的頭像 發(fā)表于 12-21 10:51 ?766次閱讀

    碳化硅的優(yōu)勢和難處

     碳化硅SiC)具有更低的阻抗和更寬的禁帶寬度,使其能夠承受更大的電流和電壓,同時實現(xiàn)更小尺寸的產(chǎn)品設(shè)計和更高效率。
    發(fā)表于 12-11 11:48 ?2567次閱讀
    <b class='flag-5'>碳化硅</b>的優(yōu)勢和難處

    碳化硅MOSFET尖峰的抑制

    碳化硅MOSFET尖峰的抑制
    的頭像 發(fā)表于 11-28 17:32 ?961次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>尖峰的抑制

    【轉(zhuǎn)帖】華潤微碳化硅/SiC SBD的優(yōu)勢及其在Boost PFC中的應(yīng)用

    的臨界擊穿電場,有利于碳化硅器件實現(xiàn)更高的耐壓;更高的飽和電子漂移速度,有利于實現(xiàn)更快的開關(guān)速度;3倍的熱導(dǎo)率,有利于提高器件散熱
    發(fā)表于 10-07 10:12