0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

最近大火的高性能計(jì)算ChatGPT究竟是什么?

GPU視覺識(shí)別 ? 來(lái)源:GPU視覺識(shí)別 ? 作者:GPU視覺識(shí)別 ? 2022-12-15 12:28 ? 次閱讀

LLM|ChatGPT| Google

PPO |Open AI|LaMDA

隨著深度學(xué)習(xí)、高性能計(jì)算、數(shù)據(jù)分析、數(shù)據(jù)挖掘、LLM、PPO、NLP等技術(shù)的快速發(fā)展,ChatGPT得到快速發(fā)展。ChatGPT是OpenAI開發(fā)的大型預(yù)訓(xùn)練語(yǔ)言模型,GPT-3模型的一個(gè)變體,經(jīng)過(guò)訓(xùn)練可以在對(duì)話中生成類似人類的文本響應(yīng)。

ChatGPT背后的算法基于Transformer架構(gòu),這是一種使用自注意力機(jī)制處理輸入數(shù)據(jù)的深度神經(jīng)網(wǎng)絡(luò)。Transformer架構(gòu)廣泛應(yīng)用于語(yǔ)言翻譯、文本摘要、問答等自然語(yǔ)言處理任務(wù)等領(lǐng)域。ChatGPT可用于創(chuàng)建能與用戶進(jìn)行對(duì)話的聊天機(jī)器人。這對(duì)客戶服務(wù)很有用,因?yàn)樗峁┝擞杏玫?a target="_blank">信息。

vhcSqsjU_cj6h.jpeg?auth_key=1671062400-0-0-cbf5dabc0c7b96eed892367aa65d1b3b

ChatGPT訓(xùn)練全過(guò)程

ChatGPT作為一個(gè)智能對(duì)話系統(tǒng),最近這兩天火爆了。網(wǎng)上到處都在傳ChatGPT相關(guān)的內(nèi)容和測(cè)試實(shí)例,效果真的很震撼。記得上一次引起如此轟動(dòng)的AI技術(shù)是兩年半以前的事了,那時(shí)候人工智能如日中天;多模態(tài)領(lǐng)域是以DaLL E2、Stable Diffusion為代表的Diffusion Model,也就是最近一直流行的AIGC模型。關(guān)于AIGC這里就不多介紹了,如有感興趣的可以看小編之前關(guān)于AIGC文章。

在整體技術(shù)路線上,ChatGPT引入了“手動(dòng)標(biāo)注數(shù)據(jù)+強(qiáng)化學(xué)習(xí)”(RLHF,從人的反饋進(jìn)行強(qiáng)化學(xué)習(xí))來(lái)不斷Fine-tune預(yù)訓(xùn)練語(yǔ)言模型。主要目的是讓LLM模型學(xué)會(huì)理解人類命令的含義(比如寫一篇短文生成問題、知識(shí)回答問題、頭腦風(fēng)暴問題等不同類型的命令),讓LLM學(xué)會(huì)判斷對(duì)于給定的提示輸入指令(用戶的問題)什么樣的回答是優(yōu)質(zhì)的(富含信息、內(nèi)容豐富、對(duì)用戶有幫助、無(wú)害、不包含歧視信息等多種標(biāo)準(zhǔn))。

在“人工標(biāo)注數(shù)據(jù)+強(qiáng)化學(xué)習(xí)”的框架下,具體來(lái)說(shuō),ChatGPT的訓(xùn)練過(guò)程分為以下三個(gè)階段:

gIvxsScs_PmaC.jpg?auth_key=1671062400-0-0-b85569b804bc640696351ce450a42688

一、第一階段

以GPT 3.5本身來(lái)說(shuō),雖然強(qiáng)大,但是很難理解不同類型的人類不同指令中所包含的不同意圖,也很難判斷生成的內(nèi)容是否是高質(zhì)量的結(jié)果。為了讓GPT 3.5初步理解指令中包含的意圖,首先會(huì)隨機(jī)抽取一批測(cè)試用戶提交的prompt(即指令或問題),由專業(yè)的標(biāo)注者對(duì)指定的提示給出高質(zhì)量的回答,然后專業(yè)人員標(biāo)注的數(shù)據(jù)對(duì)GPT 3.5模型進(jìn)行微調(diào)。通過(guò)這個(gè)過(guò)程,可以認(rèn)為GPT 3.5初步具備了理解人類提示所包含的意圖,并根據(jù)這種意圖給出相對(duì)高質(zhì)量答案的能力。

sHtwhuvk_SJSL.jpg?auth_key=1671379199-0-0-fd662c1595c7399ab303871adb26aac0

二、第二階段

這個(gè)階段的主要目的是通過(guò)人工標(biāo)注訓(xùn)練數(shù)據(jù)來(lái)訓(xùn)練回報(bào)模型。具體是隨機(jī)抽取一批用戶提交的prompt(大部分與第一階段相同),使用第一階段Fine-tune的冷啟動(dòng)模型。對(duì)于每個(gè)prompt,冷啟動(dòng)模型產(chǎn)生K個(gè)不同的答案,因此該模型產(chǎn)生,….數(shù)據(jù)。之后,標(biāo)注人員根據(jù)多種標(biāo)準(zhǔn)(上述的相關(guān)性、富含信息性、有害信息等諸多標(biāo)準(zhǔn))對(duì)X個(gè)結(jié)果進(jìn)行排序,給出X個(gè)結(jié)果的排名順序,這就是這個(gè)階段人工標(biāo)注的數(shù)據(jù)。

接下來(lái)利用這個(gè)排序結(jié)果數(shù)據(jù)來(lái)訓(xùn)練回報(bào)模型。采用的訓(xùn)練模式其實(shí)就是通常用到的pair-wise learning to rank。對(duì)于X排序結(jié)果,兩兩組合形成一個(gè)訓(xùn)練數(shù)據(jù)對(duì),ChatGPT采用pair-wise loss來(lái)訓(xùn)練Reward Model。RM模型接受一個(gè)輸入,并給出一個(gè)獎(jiǎng)勵(lì)分?jǐn)?shù)來(lái)評(píng)估答案的質(zhì)量。對(duì)于一對(duì)訓(xùn)練數(shù)據(jù),假設(shè)answer1排在answer2前面,那么Loss函數(shù)鼓勵(lì)RM模型比其他的得分更高。

歸納下:在這個(gè)階段里,首先由冷啟動(dòng)后的監(jiān)督策略模型為每個(gè)prompt產(chǎn)生X個(gè)結(jié)果,人工根據(jù)結(jié)果質(zhì)量由高到低排序,以此作為訓(xùn)練數(shù)據(jù),通過(guò)pair-wise learning to rank模式來(lái)訓(xùn)練回報(bào)模型。對(duì)于學(xué)好的RM模型來(lái)說(shuō),輸入,輸出結(jié)果的質(zhì)量得分,得分越高說(shuō)明產(chǎn)生的回答質(zhì)量越高。

6SrFQHXk_OHt9.jpg?auth_key=1671379199-0-0-54501924232420e41e0846753fe144ce

三、第三階段

本階段不需要手動(dòng)標(biāo)注數(shù)據(jù),而是使用前一階段學(xué)習(xí)的RM模型,根據(jù)RM評(píng)分結(jié)果更新預(yù)訓(xùn)練模型的參數(shù)。具體來(lái)說(shuō),首先從用戶提交的prompt中隨機(jī)抽取一批新的命令(指不同于第一、第二階段的新提示,實(shí)際上非常重要,對(duì)于提升LLM模型理解instruct指令的泛化能力很有幫助),由冷啟動(dòng)模型初始化PPO模型的參數(shù)。然后對(duì)于隨機(jī)選取的prompt,用PPO模型生成回答answer,用前一階段訓(xùn)練好的RM模型給出answer質(zhì)量評(píng)估的獎(jiǎng)勵(lì)分?jǐn)?shù),這是RM對(duì)整個(gè)答案(由詞序列組成)給出的整體reward。有了單詞序列的最終回報(bào),每個(gè)單詞可以視為一個(gè)時(shí)間步長(zhǎng),把reward由后往前依次傳遞,由此產(chǎn)生的策略梯度可以更新PPO模型參數(shù)。這是標(biāo)準(zhǔn)的強(qiáng)化學(xué)習(xí)過(guò)程,目的是訓(xùn)練LLM產(chǎn)生高reward的答案,也即是產(chǎn)生符合RM標(biāo)準(zhǔn)的高質(zhì)量回答。

如果我們不斷重復(fù)第二和第三階段,很明顯,每次迭代都使LLM模型越來(lái)越強(qiáng)大。因?yàn)樵诘诙A段,RM模型的能力通過(guò)人工標(biāo)注數(shù)據(jù)來(lái)增強(qiáng)的,而在第三階段,增強(qiáng)的RM模型對(duì)新prompt產(chǎn)生的回答進(jìn)行更準(zhǔn)確的評(píng)分,并使用強(qiáng)化學(xué)習(xí)來(lái)鼓勵(lì)LLM模型學(xué)習(xí)新的高質(zhì)量?jī)?nèi)容,這類似于使用偽標(biāo)簽來(lái)擴(kuò)展高質(zhì)量的訓(xùn)練數(shù)據(jù),所以LLM模型得到進(jìn)一步增強(qiáng)。顯然,第二階段和第三階段是相互促進(jìn)的,這就是為什么不斷迭代會(huì)有不斷增強(qiáng)的效果。

盡管如此,小編認(rèn)為在第三階段采用強(qiáng)化學(xué)習(xí)策略并不一定是ChatGPT模型效果特別好的主要原因。假設(shè)第三階段不采用強(qiáng)化學(xué)習(xí),取而代之的是以下方法:類似于第二階段的做法,對(duì)于一個(gè)新的prompt,冷啟動(dòng)模型可以生成X個(gè)答案,分別由RM模型打分。我們選擇得分最高的答案形成新的訓(xùn)練數(shù)據(jù),并進(jìn)入fine-tuneLLM模型。假設(shè)換成這種模式,相信效果可能會(huì)比強(qiáng)化學(xué)習(xí)更好。雖然沒那么精致,但效果不一定差很多。第三階段無(wú)論采用哪種技術(shù)模式,本質(zhì)上很可能都是利用第二階段學(xué)會(huì)的RM,起到了擴(kuò)充LLM模型高質(zhì)量訓(xùn)練數(shù)據(jù)的作用。

以上是ChatGPT的訓(xùn)練過(guò)程,這是一個(gè)改進(jìn)的instructGPT,改進(jìn)點(diǎn)主要是標(biāo)注數(shù)據(jù)收集方法上的一些差異。其他方面,包括模型結(jié)構(gòu)和訓(xùn)練過(guò)程,基本遵循instructGPT??梢灶A(yù)見的是,這種Reinforcement Learning from Human Feedback技術(shù)將會(huì)迅速蔓延到其他內(nèi)容生成方向,比如一個(gè)很容易想到的方向,類似“A machine translation model based on Reinforcement Learning from Human Feedback”等等。但個(gè)人認(rèn)為在NLP的某個(gè)特定內(nèi)容生成領(lǐng)域采用這種技術(shù)意義不大,因?yàn)镃hatGPT本身可以處理各種類型的任務(wù),基本涵蓋了NLP生成的很多子領(lǐng)域。所以對(duì)于某個(gè)NLP子領(lǐng)域,單獨(dú)采用這種技術(shù)的價(jià)值不大,因?yàn)槠淇尚行钥梢哉J(rèn)為已經(jīng)被ChatGPT驗(yàn)證了。如果將這種技術(shù)應(yīng)用于其他模式的生成,如圖片、音頻、視頻等,可能是更值得探索的方向。也許很快就會(huì)看到類似“A XXX diffusion model based on Reinforcement Learning from Human Feedback”之類的東西。

ChatGPT突然一下子火起來(lái)的原因?

ChatGPT因?yàn)椴僮骱?jiǎn)單,容易上手,所以能快速走紅。打開后,在對(duì)話框中輸入問題即可獲得答案。而且像一個(gè)全能選手一樣,經(jīng)常能給人意想不到的答案。

ChatGPT輕松應(yīng)對(duì)日常對(duì)話。它可以區(qū)分某些問題中的描述性錯(cuò)誤,可以直接拒絕不合理、不道德的要求。

ChatGPT一個(gè)令人驚訝的表現(xiàn)在于可以創(chuàng)作文學(xué)。比如給ChatGPT一個(gè)話題,就能寫出一個(gè)小說(shuō)框架。ChatGPT以“AI改變世界”為主線寫小說(shuō)框架時(shí),ChatGPT明確給出了故事背景、主人公、故事情節(jié)和結(jié)局。

cgnHsghe_R3IJ.jpeg?auth_key=1671379199-0-0-94bfa7dac458389f3329ea4f98bc2838

ChatGPT 根據(jù)命題撰寫小說(shuō)框架

用戶體驗(yàn)后評(píng)價(jià)“ChatGPT的語(yǔ)言組織能力、文字水平、邏輯能力可以說(shuō)是令人驚嘆”。有些用戶甚至打算把日?qǐng)?bào)、周報(bào)、總結(jié)、反思交給ChatGPT來(lái)輔助。

普通的文字創(chuàng)作只是最基礎(chǔ)的,ChatGPT還可以發(fā)現(xiàn)程序員代碼中的Bug。一些開發(fā)者在試用中表示,ChatGPT為他們的技術(shù)問題提供了非常詳細(xì)的解決方案,比一些搜索軟件的答案更可靠。美國(guó)代碼托管平臺(tái)Replit的Amjad Masad在推發(fā)文稱,ChatGPT是一個(gè)優(yōu)秀的“調(diào)試伙伴”?!八粌H解釋錯(cuò)誤,而且修復(fù)錯(cuò)誤并解釋修復(fù)方法”。

ChatGPT更有商業(yè)邏輯,不僅對(duì)自己的優(yōu)勢(shì)和劣勢(shì)了如指掌,還能分析競(jìng)品,撰寫營(yíng)銷報(bào)告。甚至對(duì)世界經(jīng)濟(jì)形勢(shì)也“了如指掌”,能說(shuō)出自己的見解。

有人把ChatGPT比作“搜索引擎+社交軟件”的組合,可以在實(shí)時(shí)交互的過(guò)程中得到問題的答案。很多用戶抱著好玩的心態(tài)與ChatGPT互動(dòng),但隨著體驗(yàn)的深入,也會(huì)擔(dān)心自己有一天會(huì)不會(huì)因?yàn)锳I而失業(yè)。

國(guó)盛證券區(qū)塊鏈研究所在研究報(bào)告中表示,ChatGPT在尋找答案和解決問題的效率上已經(jīng)部分超越了當(dāng)今的搜索引擎。ChatGPT可能會(huì)改變我們未來(lái)獲取信息和輸出內(nèi)容的方式,AIGC有望成為數(shù)字經(jīng)濟(jì)時(shí)代驅(qū)動(dòng)需求爆炸的殺手級(jí)應(yīng)用。

ChatGPT能實(shí)現(xiàn)當(dāng)前的交互,離不開OpenAI在AI預(yù)訓(xùn)練大模型領(lǐng)域的積累。OpenAI是微軟投資的AI實(shí)驗(yàn)室,也是全球AI領(lǐng)域領(lǐng)先的AI實(shí)驗(yàn)室之一。

自2018年以來(lái),OpenAI一直在發(fā)布生成式預(yù)訓(xùn)練語(yǔ)言模型GPT(Generative Pre-trained Transformer),可用于生成文章、代碼、機(jī)器翻譯、問答等各類內(nèi)容。在當(dāng)時(shí),參數(shù)數(shù)量只有1.17億。

接下來(lái),OpenAI每一代GPT模型的參數(shù)都出現(xiàn)了爆炸式增長(zhǎng),2019年2月發(fā)布的GPT-2參數(shù)量為15億,2020年5月的GPT-3參數(shù)量達(dá)到1750億,直接帶動(dòng)了前訓(xùn)練大模型成為近兩年AI領(lǐng)域的發(fā)展趨勢(shì),掀起了一場(chǎng)拼參數(shù)、拼算力的軍備競(jìng)賽。

GPT-4 還未到來(lái),此次發(fā)布的ChatGPT被視為基于GPT-3的微調(diào)版本,即GPT-3.5。

據(jù) OpenAI 介紹,ChatGPT采用的模型采用“利用人類反饋強(qiáng)化學(xué)習(xí)(RLHF)”的訓(xùn)練方式,包括:人類提問機(jī)器答,機(jī)器提問人類回答,并且不斷迭代,使模型逐漸具備判斷生成答案的能力。與GPT-3相比,ChatGPT的主要改進(jìn)在于記憶能力,可以實(shí)現(xiàn)連續(xù)對(duì)話,在對(duì)話的交互方式上大大提升了用戶體驗(yàn)。

ChatGPT的不足之處

ChatGPT并不總能帶來(lái)驚喜。不可否認(rèn),它還是有很多局限性的。當(dāng)要求ChatGPT創(chuàng)作時(shí),它可以自由發(fā)揮。然而,當(dāng)你的目標(biāo)是尋求正確的答案時(shí),ChatGPT有時(shí)可能無(wú)法達(dá)到預(yù)期。

比如讓 ChatGPT 做一道小學(xué)數(shù)學(xué)題,它看似寫出了一長(zhǎng)串計(jì)算過(guò)程,給出的卻是錯(cuò)誤答案。

DnMtc54k_y48d.jpeg?auth_key=1671379199-0-0-21dd5c86ff106762835383fc79d4c8e2

ChatGPT 對(duì)于部分題無(wú)法給出正確答案

深入體驗(yàn)后,會(huì)發(fā)現(xiàn)ChatGPT在一些文化常識(shí)問題和數(shù)學(xué)計(jì)算問題上并不是很擅長(zhǎng)。而且ChatGPT的回答往往是大段大段,過(guò)于冗長(zhǎng),看似邏輯自洽,但有時(shí)是在一本正經(jīng)“忽悠人”。仔細(xì)想想,會(huì)發(fā)現(xiàn)一些漏洞。如果非專業(yè)人士不能分辨ChatGPT答案的準(zhǔn)確性,很有可能會(huì)被嚴(yán)重誤導(dǎo)。

Stack Overflow因此決定暫時(shí)禁止它。據(jù)悉,ChatGPT出現(xiàn)后,該模型生成的大量答案很快出現(xiàn)在Stack Overflow上。這些答案通常需要有一些專業(yè)知識(shí)的人詳細(xì)閱讀才能分辨出他們是錯(cuò)的。

這種情況影響了堆棧溢出的質(zhì)量管理。ChatGPT還表示:“由于AI生成的答案并不總是準(zhǔn)確或相關(guān)的,因此可能會(huì)導(dǎo)致Stack Overflow上錯(cuò)誤答案的混亂,并誤導(dǎo)正在尋求幫助的用戶?!辈⑶疫€聲明:“Stack Overflow禁止使用AI生成答案是合理的?!?/p>

OpenAI還提到,ChatGPT有時(shí)會(huì)給出看似合理但不正確的答案。對(duì)于這個(gè)問題,Sam Altman表示:“試圖阻止ChatGPT隨機(jī)捏造,在現(xiàn)階段與現(xiàn)有技術(shù)保持平衡是很棘手的。隨著時(shí)間的推移,會(huì)根據(jù)用戶反饋進(jìn)行改進(jìn)。”

所以有些用戶把ChatGPT定位為聊天解悶的好朋友。當(dāng)你遇到困境或者需要尋找意義時(shí),ChatGPT可以給出類似“命運(yùn)之書”的答案。有些用戶把ChatGPT當(dāng)成效率工具,在文案或者一些專業(yè)問題上尋找參考。

AI是否已具有人類智能?

2022年12月,人工智能聊天機(jī)器人ChatGPT刷爆網(wǎng)絡(luò),網(wǎng)友們爭(zhēng)先恐后去領(lǐng)略它的超高情商和巨大威力。參加高考、修改代碼、構(gòu)思小說(shuō)......它在廣大網(wǎng)友的“鞭策”下不斷突破自我,甚至可以用一整段程序,拼接出一只小狗。那么,ChatGPT是如何煉成的?是否意味著AI已具有人類智能呢?

khkEav7H_jYQ8.jpeg?auth_key=1671379199-0-0-78a0c25cb85aa5816d48a49f65ff5139

chatGPT的程序小狗


ChatGPT是GPT(或生成式預(yù)訓(xùn)練轉(zhuǎn)換器)文本生成AI系列的最新發(fā)展,根據(jù)從互聯(lián)網(wǎng)上獲取的大量文本樣本來(lái)進(jìn)行訓(xùn)練。

一經(jīng)發(fā)布,ChatGPT便在網(wǎng)友的瘋狂“檢測(cè)”和“調(diào)戲”中表現(xiàn)出各種驚人的能力。OpenAI首席執(zhí)行官Sam Altman表示,自11月30日至12月5日,ChatGPT的用戶數(shù)量已突破100萬(wàn),需求大于預(yù)期。

在廣大網(wǎng)友的不懈努力下,ChatGPT短短幾天之內(nèi)完成了:

1、參加了美國(guó)高校的入學(xué)資格考試(SAT),成績(jī)?yōu)橹械葘W(xué)生水平;

2、用《坎特伯雷故事集》風(fēng)格改寫了90年代熱門歌曲《Baby Got Back》;

3、用《老友記》主角口吻創(chuàng)作了劇本對(duì)白;

4、構(gòu)思了簡(jiǎn)短的偵探小說(shuō);

5、簡(jiǎn)要闡釋了經(jīng)濟(jì)學(xué)理論;

6、給出了消除經(jīng)濟(jì)不平等的六點(diǎn)計(jì)劃;

7、與人類進(jìn)行“心理戰(zhàn)”,猜想人類實(shí)際上想讓計(jì)算機(jī)做什么;

8、規(guī)劃了如何毀滅世界;

9、生成關(guān)鍵詞指導(dǎo)AI作畫;

10、扮演OpenAI,在系統(tǒng)內(nèi)構(gòu)建了ChatGPT套娃,相當(dāng)于“我”生了一個(gè)“我”

FFj8Y924_fSDt.jpeg?auth_key=1671379199-0-0-f9bac0da012fe2dad3bfff00fa966ddc

ChatGPT的網(wǎng)絡(luò)界面

AI是否已具有人類智能?

討論AI是否具有真正的“智能”是人類的游戲。圖靈測(cè)試(The Turing test)已經(jīng)成為人工智能領(lǐng)域的核心目標(biāo)之一。它由艾倫·麥席森·圖靈提出,被公認(rèn)為人工智能崛起的標(biāo)志。圖靈測(cè)試人為地將“思想能力”定義在功能和實(shí)用的范疇內(nèi),為“智力”設(shè)置了條件。

圖靈測(cè)試到底是什么意思?簡(jiǎn)單來(lái)說(shuō),就是把機(jī)器關(guān)在小黑屋里,讓它和人類聊天對(duì)話,然后在小黑屋里分辨回答問題的是機(jī)器還是人類。如果不能分辨,說(shuō)明機(jī)器和人的智能水平一樣,通過(guò)了測(cè)試。

到目前為止,還沒有、AI模型能真正通過(guò)圖靈測(cè)試。

談到GPT-4將如何優(yōu)化,ChatGPT給出了以下答案:

GPT-4是一個(gè)大型語(yǔ)言模型,也是人工智能領(lǐng)域最先進(jìn)的技術(shù)之一。在大量訓(xùn)練數(shù)據(jù)的基礎(chǔ)上,可以模擬人類的語(yǔ)言表達(dá)能力,用相似的語(yǔ)言回答問題。目前GPT-4還在優(yōu)化中,可能在以下幾個(gè)方面有一些改進(jìn):

1、增加更多的訓(xùn)練數(shù)據(jù),以提高其知識(shí)和準(zhǔn)確性;

2、增加更復(fù)雜的算法來(lái)提高其性能和處理能力;

3、增加更多的功能,如語(yǔ)音合成和圖像識(shí)別,以提高其應(yīng)用能力;

4、增加更多的輸入和輸出接口,如聊天機(jī)器人、問答系統(tǒng)等,以提高其便利性。

未來(lái),AI真的能擁有人類的智能嗎?眾說(shuō)紛紜。也許奇點(diǎn)已然臨近,也可能還只是空中樓閣。但不可否認(rèn)的是,ChatGPT必將引領(lǐng)人工智能領(lǐng)域的先鋒革命。

ChatGPT能做游戲?

ChatGPT這種新模型的火爆程度不用多說(shuō),因?yàn)樗挠锰帉?shí)在太廣泛,這兩天服務(wù)器直接被擠爆了。當(dāng)然,怎么會(huì)沒人嘗試用它做游戲呢?結(jié)合一些開發(fā)者和自己的嘗試,雖然ChatGPT目前還不能達(dá)到完美的輔助效果,但是它的表現(xiàn)一定會(huì)超出你的預(yù)期。

從最簡(jiǎn)單的文字游戲開始ChatGPT就表現(xiàn)地很好。最幸福的應(yīng)該是跑團(tuán)的玩家(桌上角色扮演游戲)。現(xiàn)在,他們不需要再去煞費(fèi)苦心地找場(chǎng)地,聚集玩家,找有經(jīng)驗(yàn)的演職人員。只需給AI輸入一些世界觀信息,就可以開啟一段自由度很高的冒險(xiǎn),因?yàn)锳I會(huì)根據(jù)輸入靈活地生成結(jié)果。


QN7OUJsW_ujCY.jpeg?auth_key=1671379199-0-0-52f0f10a40a78613ed754488168f1357

有一些熟練的玩家甚至總結(jié)出了訓(xùn)練AI的運(yùn)行模板,可以將游戲分成不同的模式,并提供完整的查詢、暫停等完整的系統(tǒng)功能。另外,GitHub現(xiàn)在已經(jīng)有了將ChatGPT連接到群機(jī)器人的代碼,很多群聊都變成了聯(lián)機(jī)AI跑群。

SuUs7wXL_H29W.jpeg?auth_key=1671379199-0-0-435ee584b53a7fb292d3f410eca3bed1

當(dāng)然,這只是基于AI本身展開的互動(dòng)文字游戲,可能與我們認(rèn)知中的“做游戲”有所不同。但是,用代碼寫一個(gè)可運(yùn)行的游戲,也根本難不倒ChatGPT,簡(jiǎn)單到幾乎唾手可得。舉個(gè)最簡(jiǎn)單的例子,輸入用xx語(yǔ)言實(shí)現(xiàn)猜拳、貪吃蛇、俄羅斯方塊等簡(jiǎn)單游戲的要求,就會(huì)自己完善規(guī)則,輸出代碼。

Y4FqQftd_Ynaf.jpeg?auth_key=1671379199-0-0-25fe2c40020b72f20f5af84408f6c8ae

把完整的代碼復(fù)制保存,通常幾乎一行都不用改,游戲就能順利運(yùn)行。而且隨時(shí)可以改變需求,它也會(huì)自動(dòng)補(bǔ)全規(guī)則、生成新的代碼。只能說(shuō)以后計(jì)算機(jī)系學(xué)生的作業(yè),可能大半都要被它包圓了。

9sdebqxH_d9g6.jpeg?auth_key=1671379199-0-0-f90d9ab59527fc5181b88f79162ade2b

這對(duì)游戲開發(fā)小白來(lái)說(shuō)絕對(duì)是大大的福利,在B站上,就已經(jīng)有人在零基礎(chǔ)的情況下,靠ChatGPT做出了一款完整的Unity打磚塊游戲,同樣沒有改過(guò)代碼。

為什么說(shuō)是小白福利呢?因?yàn)樗恢鼓軐懘a,還會(huì)相當(dāng)人性化地回復(fù)你。當(dāng)然,它不能完全替代教程,但比起漫無(wú)目的地尋找零散資源,問AI顯然快多了。更別說(shuō)它連這么口語(yǔ)化的表述都能理解——

uLJPgyEP_rnGp.jpeg?auth_key=1671379199-0-0-20714d757f8faf78cfa449f5e687cd4b

nvLrR54Z_6D3H.jpeg?auth_key=1671379199-0-0-142320bc6a42bada53b144e31df0662a

也有UP主嘗試用它來(lái)寫《植物大戰(zhàn)僵尸》,結(jié)果也發(fā)現(xiàn)模塊功能完全不用改代碼,直接就能用。由于受到字符長(zhǎng)度限制,完整的項(xiàng)目代碼沒辦法一步到位,但這不算大問題。

PROm6qn7_wnyO.jpeg?auth_key=1671379199-0-0-bd4f546a8ab8a88a4e2e80aede625021

dL58Y7ru_G9z6.jpeg?auth_key=1671379199-0-0-40e4f8aaa0ee9a440b52b4d6b81bbda0

2D能做,3D行不行?當(dāng)然可以!至少已經(jīng)有人用它在Unity、UE里實(shí)現(xiàn)過(guò)簡(jiǎn)單的射擊游戲了。雖然看起來(lái)仍然很簡(jiǎn)陋,但如果你有耐心多搗鼓搗鼓,我不懷疑它能實(shí)現(xiàn)一個(gè)相對(duì)復(fù)雜的大型需求。

pS4Ex8VI_fMIB.jpeg?auth_key=1671379199-0-0-5772fef167f33c05d09815b739181a90

ChatGPT能否取代Google百度等搜索引擎

既然看上去ChatGPT幾乎無(wú)所不能地回答各種類型的prompt,那么一個(gè)很自然的問題就是:ChatGPT或者未來(lái)即將面世的GPT4,能否取代Google、百度這些傳統(tǒng)搜索引擎呢?個(gè)人覺得目前應(yīng)該還不行,但是如果從技術(shù)角度稍微改造一下,理論上是可以取代傳統(tǒng)搜索引擎的。

為什么說(shuō)目前形態(tài)ChatGPT還不能取代搜索引擎呢?主要有三點(diǎn)原因:

一、對(duì)于不少知識(shí)類型的問題,ChatGPT會(huì)給出看上去很有道理,但是事實(shí)上是錯(cuò)誤答案的內(nèi)容,考慮到對(duì)于很多問題它又能回答得很好,這將會(huì)給用戶造成困擾:如果我對(duì)我提的問題確實(shí)不知道正確答案,那我是該相信ChatGPT的結(jié)果還是不該相信呢?此時(shí)你是無(wú)法作出判斷的。這個(gè)問題可能是比較要命的。

二、ChatGPT目前這種基于GPT大模型基礎(chǔ)上進(jìn)一步增加標(biāo)注數(shù)據(jù)訓(xùn)練的模式,對(duì)于LLM模型吸納新知識(shí)是非常不友好的。新知識(shí)總是在不斷出現(xiàn),而出現(xiàn)一些新知識(shí)就去重新預(yù)訓(xùn)練GPT模型是不現(xiàn)實(shí)的,無(wú)論是訓(xùn)練時(shí)間成本還是金錢成本,都不可接受。如果對(duì)于新知識(shí)采取Fine-tune的模式,看上去可行且成本相對(duì)較低,但是很容易產(chǎn)生新數(shù)據(jù)的引入導(dǎo)致對(duì)原有知識(shí)的災(zāi)難遺忘問題,尤其是短周期的頻繁fine-tune,會(huì)使這個(gè)問題更為嚴(yán)重。所以如何近乎實(shí)時(shí)地將新知識(shí)融入LLM是個(gè)非常有挑戰(zhàn)性的問題。

三、ChatGPT或GPT4的訓(xùn)練成本以及在線推理成本太高,導(dǎo)致如果面向真實(shí)搜索引擎的以億記的用戶請(qǐng)求,假設(shè)繼續(xù)采取免費(fèi)策略,OpenAI無(wú)法承受,但是如果采取收費(fèi)策略,又會(huì)極大減少用戶基數(shù),是否收費(fèi)是個(gè)兩難決策,當(dāng)然如果訓(xùn)練成本能夠大幅下降,則兩難自解。

以上這三個(gè)原因,導(dǎo)致目前ChatGPT應(yīng)該還無(wú)法取代傳統(tǒng)搜索引擎。那么這幾個(gè)問題,是否可以解決呢?其實(shí),如果我們以ChatGPT的技術(shù)路線為主體框架,再吸納其它對(duì)話系統(tǒng)采用的一些現(xiàn)成的技術(shù)手段,來(lái)對(duì)ChatGPT進(jìn)行改造,從技術(shù)角度來(lái)看,除了成本問題外的前兩個(gè)技術(shù)問題,目前看是可以得到很好地解決。我們只需要在ChatGPT的基礎(chǔ)上,引入sparrow系統(tǒng)以下能力:基于retrieval結(jié)果的生成結(jié)果證據(jù)展示,以及引入LaMDA系統(tǒng)的對(duì)于新知識(shí)采取retrieval模式,那么前面提到的新知識(shí)的及時(shí)引入,以及生成內(nèi)容可信性驗(yàn)證,基本就不是什么大問題。

c3k7KIKV_RIaG.jpeg?auth_key=1671379199-0-0-9e571105433b5523bf7bb4da63da4ccc

基于以上考慮,在上圖中展示出了我心目中下一代搜索引擎的整體結(jié)構(gòu):它其實(shí)是目前的傳統(tǒng)搜索引擎+ChatGPT的雙引擎結(jié)構(gòu),ChatGPT模型是主引擎,傳統(tǒng)搜索引擎是輔引擎。

傳統(tǒng)搜索引擎的主要輔助功能有兩個(gè):一個(gè)是對(duì)于ChatGPT產(chǎn)生的知識(shí)類問題的回答,進(jìn)行結(jié)果可信性驗(yàn)證與展示,就是說(shuō)在ChatGPT給出答案的同時(shí),從搜索引擎里找到相關(guān)內(nèi)容片段及url鏈接,同時(shí)把這些內(nèi)容展示給用戶,使得用戶可以從額外提供的內(nèi)容里驗(yàn)證答案是否真實(shí)可信,這樣就可以解決ChatGPT產(chǎn)生的回答可信與否的問題,避免用戶對(duì)于產(chǎn)生結(jié)果無(wú)所適從的局面。當(dāng)然,只有知識(shí)類問題才有必要尋找可信信息進(jìn)行驗(yàn)證,很多其他自由生成類型的問題,比如讓ChatGPT寫一個(gè)滿足某個(gè)主題的小作文這種完全自由發(fā)揮的內(nèi)容,則無(wú)此必要。所以這里還有一個(gè)什么情況下會(huì)調(diào)用傳統(tǒng)搜索引擎的問題,具體技術(shù)細(xì)節(jié)完全可仿照sparrow的做法,里面有詳細(xì)的技術(shù)方案。

傳統(tǒng)搜索引擎的第二個(gè)輔助功能是及時(shí)補(bǔ)充新知識(shí)。既然我們不可能隨時(shí)把新知識(shí)快速引入LLM,那么可以把它存到搜索引擎的索引里,ChatGPT如果發(fā)現(xiàn)具備時(shí)效性的問題,它自己又回答不了,則可以轉(zhuǎn)向搜索引擎抽取對(duì)應(yīng)的答案,或者根據(jù)返回相關(guān)片段再加上用戶輸入問題通過(guò)ChatGPT產(chǎn)生答案。關(guān)于這方面的具體技術(shù)手段,可以參考LaMDA,其中有關(guān)于新知識(shí)處理的具體方法。

除了上面的幾種技術(shù)手段,我覺得相對(duì)ChatGPT只有一個(gè)綜合的Reward Model,sparrow里把答案helpful相關(guān)的標(biāo)準(zhǔn)(比如是否富含信息量、是否合乎邏輯等)采用一個(gè)RM,其它類型toxic/harmful相關(guān)標(biāo)準(zhǔn)(比如是否有bias、是否有害信息等)另外單獨(dú)采用一個(gè)RM,各司其職,這種模式要更清晰合理一些。因?yàn)閱我活愋偷臉?biāo)準(zhǔn),更便于標(biāo)注人員進(jìn)行判斷,而如果一個(gè)Reward Model融合多種判斷標(biāo)準(zhǔn),相互打架在所難免,判斷起來(lái)就很復(fù)雜效率也低,所以感覺可以引入到ChatGPT里來(lái),得到進(jìn)一步的模型改進(jìn)。

通過(guò)吸取各種現(xiàn)有技術(shù)所長(zhǎng),我相信大致可以解決ChatGPT目前所面臨的問題,技術(shù)都是現(xiàn)成的,從產(chǎn)生內(nèi)容效果質(zhì)量上取代現(xiàn)有搜索引擎問題不大。當(dāng)然,至于模型訓(xùn)練成本和推理成本問題,可能短時(shí)期內(nèi)無(wú)法獲得快速大幅降低,這可能是決定LLM是否能夠取代現(xiàn)有搜索引擎的關(guān)鍵技術(shù)瓶頸。

從形式上來(lái)看,未來(lái)的搜索引擎大概率是以用戶智能助手APP的形式存在的,但是,從短期可行性上來(lái)說(shuō),在走到最終形態(tài)之前,過(guò)渡階段大概率兩個(gè)引擎的作用是反過(guò)來(lái)的,就是傳統(tǒng)搜索引擎是主引擎,ChatGPT是輔引擎,形式上還是目前搜索引擎的形態(tài),只是部分搜索內(nèi)容Top 1的搜索結(jié)果是由ChatGPT產(chǎn)生的,大多數(shù)用戶請(qǐng)求,可能在用戶看到Top 1結(jié)果就能滿足需求,對(duì)于少數(shù)滿足不了的需求,用戶可以采用目前搜索引擎翻頁(yè)搜尋的模式。

搜索引擎未來(lái)大概率會(huì)以這種過(guò)渡階段以傳統(tǒng)搜索引擎為主,ChatGPT這種instruct-based生成模型為輔,慢慢切換到以ChatGPT生成內(nèi)容為主,而這個(gè)切換節(jié)點(diǎn),很可能取決于大模型訓(xùn)練成本的大幅下降的時(shí)間,以此作為轉(zhuǎn)換節(jié)點(diǎn)。

藍(lán)海大腦ChatGPT深度學(xué)習(xí)一體機(jī)采用 IntelAMD處理器,突破傳統(tǒng)風(fēng)冷散熱模式,采用風(fēng)冷和液冷混合散熱模式——服務(wù)器內(nèi)主要熱源 CPU 利用液冷冷板進(jìn)行冷卻,其余熱源仍采用風(fēng)冷方式進(jìn)行冷卻。通過(guò)這種混合制冷方式,可大幅提升服務(wù)器散熱效率,同時(shí),降低主要熱源 CPU 散熱所耗電能,并增強(qiáng)服務(wù)器可靠性;支持VR、AI加速計(jì)算;深受廣大深度學(xué)習(xí)ChatGPT領(lǐng)域工作者的喜愛。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 一體機(jī)
    +關(guān)注

    關(guān)注

    0

    文章

    843

    瀏覽量

    32642
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5466

    瀏覽量

    120891
  • ChatGPT
    +關(guān)注

    關(guān)注

    29

    文章

    1547

    瀏覽量

    7363
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    PCM1861 INT腳究竟是輸出還是輸入?

    這個(gè)芯片activce或是idle. 是否有人解釋下,INT腳究竟是輸出還是輸入。我希望是輸出,我需要讀取到是否有analog audio輸入的信息。 或者,輸入輸出與否還要靠其他什么地方設(shè)置? 盼望有人回復(fù)解答,不勝感激!
    發(fā)表于 10-29 07:29

    超高頻讀寫器究竟是什么,能做什么?一文讀懂!

    在物聯(lián)網(wǎng)技術(shù)日新月異的今天,超高頻讀寫器作為射頻識(shí)別(RFID)技術(shù)的重要組成部分,正逐漸滲透到我們生活的各個(gè)領(lǐng)域。那么,超高頻讀寫器究竟是什么?它又能做些什么呢?本文將帶您一探究竟。一、超高頻
    的頭像 發(fā)表于 10-23 14:41 ?122次閱讀
    超高頻讀寫器<b class='flag-5'>究竟是</b>什么,能做什么?一文讀懂!

    揭秘貼片功率電感發(fā)燙究竟是不是燒壞了

    電子發(fā)燒友網(wǎng)站提供《揭秘貼片功率電感發(fā)燙究竟是不是燒壞了.docx》資料免費(fèi)下載
    發(fā)表于 09-30 14:44 ?0次下載

    電感器線徑究竟是粗好還是細(xì)好

    電子發(fā)燒友網(wǎng)站提供《電感器線徑究竟是粗好還是細(xì)好.docx》資料免費(fèi)下載
    發(fā)表于 09-20 11:25 ?0次下載

    tas5756m使用GPIO口加內(nèi)部PLL產(chǎn)生MCLK的方法究竟是怎么樣的?

    tas5756m使用GPIO口加內(nèi)部PLL產(chǎn)生MCLK的方法究竟是怎么樣的?
    發(fā)表于 08-19 06:06

    請(qǐng)問cH340G的TX引腳電平究竟是3v還是5v?

    用CD34G來(lái)實(shí)現(xiàn)usb轉(zhuǎn)串口的時(shí)候,直接用usb口的5v作為電源電壓,它的tx引腳輸出的高電平究竟是5v還是3v,我實(shí)測(cè)是3v,但網(wǎng)上有的人是5v,想進(jìn)一步得到大家的確認(rèn)。
    發(fā)表于 05-14 08:15

    工業(yè)物聯(lián)網(wǎng)究竟是什么呢?它又有哪些作用呢?

    隨著科技的快速發(fā)展,物聯(lián)網(wǎng)技術(shù)已經(jīng)逐漸滲透到我們生活的各個(gè)角落,而 工業(yè)物聯(lián)網(wǎng)(IIoT) 更是引領(lǐng)著工業(yè)領(lǐng)域的數(shù)字化轉(zhuǎn)型。那么,工業(yè)物聯(lián)網(wǎng)究竟是什么呢?它又有哪些作用呢?本文將對(duì)此進(jìn)行深度解析
    的頭像 發(fā)表于 04-22 15:26 ?333次閱讀

    STM32擦除后數(shù)據(jù)究竟是0x00還是0xff ?

    STM32擦除后數(shù)據(jù)究竟是0x00還是0xff ,百度查了許多發(fā)現(xiàn)大多數(shù)都是0xff的多,都說(shuō)SD卡(TF)儲(chǔ)存介質(zhì)是Flash 所以擦除后為0xff,但是我遇到了讀出來(lái)的數(shù)據(jù)是0x00的情況,為什么呢
    發(fā)表于 04-18 07:59

    MOSFET的柵源振蕩究竟是怎么來(lái)的?柵源振蕩的危害什么?如何抑制

    MOSFET的柵源振蕩究竟是怎么來(lái)的呢?柵源振蕩的危害什么?如何抑制或緩解柵源振蕩的現(xiàn)象呢? MOSFET(金屬-氧化物-半導(dǎo)體場(chǎng)效應(yīng)晶體管)的柵源振蕩是指在工作過(guò)程中,出現(xiàn)的柵極與源極之間產(chǎn)生
    的頭像 發(fā)表于 03-27 15:33 ?1433次閱讀

    【量子計(jì)算機(jī)重構(gòu)未來(lái) | 閱讀體驗(yàn)】+量子計(jì)算機(jī)的原理究竟是什么以及有哪些應(yīng)用

    本書內(nèi)容從目錄可以看出本書主要是兩部分內(nèi)容,一部分介紹量子計(jì)算機(jī)原理,一部分介紹其應(yīng)用。 其實(shí)個(gè)人也是抱著對(duì)這兩個(gè)問題的興趣來(lái)看的。 究竟什么是量子計(jì)算機(jī)相信很多讀者都是抱著這個(gè)疑問
    發(fā)表于 03-11 12:50

    吸塵器究竟是如何替你“吃灰”的【其利天下技術(shù)】

    如今,吸塵器已成為大多數(shù)人居家必備的小家電產(chǎn)品,那么說(shuō)起吸塵器,你對(duì)吸塵器有了解多少呢?不知道大家知不知道它的原理是什么?今天我們就來(lái)說(shuō)一說(shuō)吸塵器究竟是如何替你“吃灰”的。
    的頭像 發(fā)表于 03-07 21:17 ?825次閱讀
    吸塵器<b class='flag-5'>究竟是</b>如何替你“吃灰”的【其利天下技術(shù)】

    “其貌不揚(yáng)”的共模電感究竟是如何做到抗干擾的呢?

    “其貌不揚(yáng)”的共模電感究竟是如何做到抗干擾的呢? 共模電感是一種用于濾除電子設(shè)備中的共模噪聲的重要元件,其主要作用是提供阻抗來(lái)濾除共模干擾信號(hào)。盡管外觀看起來(lái)“其貌不揚(yáng)”,但共模電感通過(guò)其特殊
    的頭像 發(fā)表于 01-11 16:27 ?685次閱讀

    同步電機(jī)的轉(zhuǎn)數(shù)同步究竟是與什么同步啊?

    同步電機(jī)的轉(zhuǎn)數(shù)同步究竟是與什么同步啊? 所有的同步電機(jī)的轉(zhuǎn)數(shù)都一樣嗎?還是與電機(jī)的極對(duì)數(shù)有關(guān)系呢?
    發(fā)表于 12-19 06:44

    半導(dǎo)體內(nèi)部電荷運(yùn)動(dòng)的機(jī)制究竟是什么呢?

    半導(dǎo)體內(nèi)部電荷運(yùn)動(dòng)的機(jī)制究竟是什么呢? 半導(dǎo)體材料的內(nèi)部電荷運(yùn)動(dòng)機(jī)制是半導(dǎo)體物理學(xué)和固體物理學(xué)的重要研究領(lǐng)域之一。在這篇文章中,我們將詳細(xì)、真實(shí)地探討半導(dǎo)體內(nèi)部電荷運(yùn)動(dòng)的機(jī)制,從電子的能帶結(jié)構(gòu)到
    的頭像 發(fā)表于 11-30 11:28 ?763次閱讀

    一體成型貼片電感在使用中發(fā)熱究竟是否會(huì)影響運(yùn)行

    電子發(fā)燒友網(wǎng)站提供《一體成型貼片電感在使用中發(fā)熱究竟是否會(huì)影響運(yùn)行.docx》資料免費(fèi)下載
    發(fā)表于 11-13 16:28 ?1次下載