0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文闡述Redis分布式鎖的10個(gè)坑

小林coding ? 來(lái)源:撿田螺的小男孩 ? 2022-12-29 14:52 ? 次閱讀

日常開(kāi)發(fā)中,經(jīng)常會(huì)碰到秒殺搶購(gòu)等業(yè)務(wù)。

為了避免并發(fā)請(qǐng)求造成的庫(kù)存超賣(mài)等問(wèn)題,我們一般會(huì)用到Redis分布式鎖。

但是使用Redis分布式鎖,很容易踩坑哦!

本文將給大家分析闡述,Redis分布式鎖的10個(gè)坑!

08b1430e-873d-11ed-bfe3-dac502259ad0.png

1. 非原子操作(setnx + expire)

一說(shuō)到實(shí)現(xiàn)Redis的分布式鎖,很多小伙伴馬上就會(huì)想到setnx+ expire命令。也就是說(shuō),先用setnx來(lái)?yè)屾i,如果搶到之后,再用expire給鎖設(shè)置一個(gè)過(guò)期時(shí)間。

偽代碼如下:

if(jedis.setnx(lock_key,lock_value)==1){//加鎖
jedis.expire(lock_key,timeout);//設(shè)置過(guò)期時(shí)間
doBusiness//業(yè)務(wù)邏輯處理
}

這塊代碼是有坑的,因?yàn)閟etnx和expire兩個(gè)命令是分開(kāi)寫(xiě)的,并不是原子操作!如果剛要執(zhí)行完setnx加鎖,正要執(zhí)行expire設(shè)置過(guò)期時(shí)間時(shí),進(jìn)程crash或者要重啟維護(hù)了,那么這個(gè)鎖就“長(zhǎng)生不老”了,別的線程永遠(yuǎn)獲取不到鎖啦。

2.被別的客戶端請(qǐng)求覆蓋( setnx + value為過(guò)期時(shí)間)

為了解決:發(fā)生異常時(shí),鎖得不到釋放的問(wèn)題。有小伙伴提出,可以把過(guò)期時(shí)間放到setnx的value里面。如果加鎖失敗,再拿出value值和當(dāng)前系統(tǒng)時(shí)間校驗(yàn)一下是否過(guò)期即可。偽代碼實(shí)現(xiàn)如下:

longexpireTime=System.currentTimeMillis()+timeout;//系統(tǒng)時(shí)間+設(shè)置的超時(shí)時(shí)間
StringexpireTimeStr=String.valueOf(expireTime);//轉(zhuǎn)化為String字符串

//如果當(dāng)前鎖不存在,返回加鎖成功
if(jedis.setnx(lock_key,expireTimeStr)==1){
returntrue;
}

//如果鎖已經(jīng)存在,獲取鎖的過(guò)期時(shí)間
StringoldExpireTimreStr=jedis.get(lock_key);

//如果獲取到的老的預(yù)期過(guò)期時(shí)間,小于系統(tǒng)當(dāng)前時(shí)間,表示已經(jīng)過(guò)期了
if(oldExpireTimreStr!=null&&Long.parseLong(oldExpireTimreStr)

這種實(shí)現(xiàn)的方案,也是有坑的:如果鎖過(guò)期的時(shí)候,并發(fā)多個(gè)客戶端同時(shí)請(qǐng)求過(guò)來(lái),都執(zhí)行jedis.getSet(),最終只能有一個(gè)客戶端加鎖成功,但是該客戶端鎖的過(guò)期時(shí)間,可能被別的客戶端覆蓋。

3. 忘記設(shè)置過(guò)期時(shí)間

之前review代碼的時(shí)候,看到這樣實(shí)現(xiàn)的分布式鎖,偽代碼

try{
if(jedis.setnx(lock_key,lock_value)==1){//加鎖
doBusiness//業(yè)務(wù)邏輯處理
returntrue;//加鎖成功,處理完業(yè)務(wù)邏輯返回
}
returnfalse;//加鎖失敗
}finally{
unlock(lockKey);-//釋放鎖
}

這塊有什么問(wèn)題呢?是的,忘記設(shè)置過(guò)期時(shí)間了。如果程序在運(yùn)行期間,機(jī)器突然掛了,代碼層面沒(méi)有走到finally代碼塊,即在宕機(jī)前,鎖并沒(méi)有被刪除掉,這樣的話,就沒(méi)辦法保證解鎖,所以這里需要給lockKey加一個(gè)過(guò)期時(shí)間。注意哈,使用分布式鎖,一定要設(shè)置過(guò)期時(shí)間哈。

4. 業(yè)務(wù)處理完,忘記釋放鎖

很多小伙伴,會(huì)使用Redis的set指令擴(kuò)展參數(shù)來(lái)實(shí)現(xiàn)分布式鎖。

set指令擴(kuò)展參數(shù):SET key value[EX seconds][PX milliseconds][NX|XX]

-NX:表示key不存在的時(shí)候,才能set成功,也即保證只有第一個(gè)客戶端請(qǐng)求才能獲得鎖,
而其他客戶端請(qǐng)求只能等其釋放鎖,才能獲取。
- EX seconds :設(shè)定key的過(guò)期時(shí)間,時(shí)間單位是秒。
-PXmilliseconds:設(shè)定key的過(guò)期時(shí)間,單位為毫秒
-XX:僅當(dāng)key存在時(shí)設(shè)置值

小伙伴會(huì)寫(xiě)出如下偽代碼:

if(jedis.set(lockKey,requestId,"NX","PX",expireTime)==1){//加鎖
doBusiness//業(yè)務(wù)邏輯處理
returntrue;//加鎖成功,處理完業(yè)務(wù)邏輯返回
}
returnfalse;//加鎖失敗

這塊偽代碼,初看覺(jué)得沒(méi)啥問(wèn)題,但是細(xì)想,不太對(duì)呀。因?yàn)?strong>忘記釋放鎖了!如果每次加鎖成功,都要等到超時(shí)時(shí)間才釋放鎖,是會(huì)有問(wèn)題的。這樣程序不高效,應(yīng)當(dāng)每次處理完業(yè)務(wù)邏輯,都要釋放鎖

正例如下:

try{
if(jedis.set(lockKey,requestId,"NX","PX",expireTime)==1){//加鎖
doBusiness//業(yè)務(wù)邏輯處理
returntrue;//加鎖成功,處理完業(yè)務(wù)邏輯返回
}
returnfalse;//加鎖失敗
}finally{
unlock(lockKey);-//釋放鎖
}

5. B的鎖被A給釋放了

我們來(lái)看下這塊偽代碼:

try{
if(jedis.set(lockKey,requestId,"NX","PX",expireTime)==1){//加鎖
doBusiness//業(yè)務(wù)邏輯處理
returntrue;//加鎖成功,處理完業(yè)務(wù)邏輯返回
}
returnfalse;//加鎖失敗
}finally{
unlock(lockKey);//釋放鎖
}

大家覺(jué)得會(huì)有哪些坑呢?

假設(shè)在這樣的并發(fā)場(chǎng)景下:A、B兩個(gè)線程來(lái)嘗試給Redis的keylockKey加鎖,A線程先拿到鎖(假如鎖超時(shí)時(shí)間是3秒后過(guò)期)。如果線程A執(zhí)行的業(yè)務(wù)邏輯很耗時(shí),超過(guò)了3秒還是沒(méi)有執(zhí)行完。這時(shí)候,Redis會(huì)自動(dòng)釋放lockKey鎖。剛好這時(shí),線程B過(guò)來(lái)了,它就能搶到鎖了,開(kāi)始執(zhí)行它的業(yè)務(wù)邏輯,恰好這時(shí),線程A執(zhí)行完邏輯,去釋放鎖的時(shí)候,它就把B的鎖給釋放掉了。

正確的方式應(yīng)該是,在用set擴(kuò)展參數(shù)加鎖時(shí),放多一個(gè)這個(gè)線程請(qǐng)求的唯一標(biāo)記,比如requestId,然后釋放鎖的時(shí)候,判斷一下是不是剛剛的請(qǐng)求。

try{
if(jedis.set(lockKey,requestId,"NX","PX",expireTime)==1){//加鎖
doBusiness//業(yè)務(wù)邏輯處理
returntrue;//加鎖成功,處理完業(yè)務(wù)邏輯返回
}
returnfalse;//加鎖失敗
}finally{
if(requestId.equals(jedis.get(lockKey))){//判斷一下是不是自己的requestId
unlock(lockKey);//釋放鎖
}
}

6. 釋放鎖時(shí),不是原子性

以上的這塊代碼,還是有坑:

if(requestId.equals(jedis.get(lockKey))){//判斷一下是不是自己的requestId
unlock(lockKey);//釋放鎖
}

因?yàn)榕袛嗍遣皇钱?dāng)前線程加的鎖和釋放鎖不是一個(gè)原子操作。如果調(diào)用unlock(lockKey)釋放鎖的時(shí)候,鎖已經(jīng)過(guò)期,所以這把鎖已經(jīng)可能已經(jīng)不屬于當(dāng)前客戶端,會(huì)解除他人加的鎖

因此,這個(gè)坑就是:判斷和刪除是兩個(gè)操作,不是原子的,有一致性問(wèn)題。釋放鎖必須保證原子性,可以使用Redis+Lua腳本來(lái)完成,類(lèi)似Lua腳本如下:

ifredis.call('get',KEYS[1])==ARGV[1]then
returnredis.call('del',KEYS[1])
else
return0
end;

7. 鎖過(guò)期釋放,業(yè)務(wù)沒(méi)執(zhí)行完

加鎖后,如果超時(shí)了,Redis會(huì)自動(dòng)釋放清除鎖,這樣有可能業(yè)務(wù)還沒(méi)處理完,鎖就提前釋放了。怎么辦呢?

有些小伙伴認(rèn)為,稍微把鎖過(guò)期時(shí)間設(shè)置長(zhǎng)一些就可以啦。其實(shí)我們設(shè)想一下,是否可以給獲得鎖的線程,開(kāi)啟一個(gè)定時(shí)守護(hù)線程,每隔一段時(shí)間檢查鎖是否還存在,存在則對(duì)鎖的過(guò)期時(shí)間延長(zhǎng),防止鎖過(guò)期提前釋放。

當(dāng)前開(kāi)源框架Redisson解決了這個(gè)問(wèn)題。我們一起來(lái)看下Redisson底層原理圖吧:

08be3c4e-873d-11ed-bfe3-dac502259ad0.png

只要線程一加鎖成功,就會(huì)啟動(dòng)一個(gè)watch dog看門(mén)狗,它是一個(gè)后臺(tái)線程,會(huì)每隔10秒檢查一下,如果線程一還持有鎖,那么就會(huì)不斷的延長(zhǎng)鎖key的生存時(shí)間。因此,Redisson就是使用Redisson解決了鎖過(guò)期釋放,業(yè)務(wù)沒(méi)執(zhí)行完問(wèn)題。

8. Redis分布式鎖和@transactional一起使用失效

大家看下這塊偽代碼:

@Transactional
publicvoidupdateDB(intlockKey){
booleanlockFlag=redisLock.lock(lockKey);
if(!lockFlag){
thrownewRuntimeException(“請(qǐng)稍后再試”);
}
doBusiness//業(yè)務(wù)邏輯處理
redisLock.unlock(lockKey);
}

在事務(wù)中,使用了Redis分布式鎖.這個(gè)方法一旦執(zhí)行,事務(wù)生效,接著就Redis分布式鎖生效,代碼執(zhí)行完后,先釋放Redis分布式鎖,然后再提交事務(wù)數(shù)據(jù),最后事務(wù)結(jié)束。在這個(gè)過(guò)程中,事務(wù)沒(méi)有提交之前,分布式鎖已經(jīng)被釋放,導(dǎo)致分布式鎖失效

這是因?yàn)?

spring的Aop,會(huì)在updateDB方法之前開(kāi)啟事務(wù),之后再加鎖,當(dāng)鎖住的代碼執(zhí)行完成后,再提交事務(wù),因此鎖住的代碼塊執(zhí)行是在事務(wù)之內(nèi)執(zhí)行的,可以推斷在代碼塊執(zhí)行完時(shí),事務(wù)還未提交,鎖已經(jīng)被釋放,此時(shí)其他線程拿到鎖之后進(jìn)行鎖住的代碼塊,讀取的庫(kù)存數(shù)據(jù)不是最新的。

正確的實(shí)現(xiàn)方法,可以在updateDB方法之前就上鎖,即還沒(méi)有開(kāi)事務(wù)之前就加鎖,那么就可以保證線程的安全性.

9.鎖可重入

前面討論的Redis分布式鎖,都是不可重入的。

所謂的不可重入,就是當(dāng)前線程執(zhí)行某個(gè)方法已經(jīng)獲取了該鎖,那么在方法中嘗試再次獲取鎖時(shí),會(huì)阻塞,不可以再次獲得鎖。同一個(gè)人拿一個(gè)鎖 ,只能拿一次不能同時(shí)拿2次。

不可重入的分布式鎖的話,是可以滿足絕大多數(shù)的業(yè)務(wù)場(chǎng)景。但是有時(shí)候一些業(yè)務(wù)場(chǎng)景,我們還是需要可重入的分布式鎖,大家實(shí)現(xiàn)分布式鎖的過(guò)程中,需要注意一下,你當(dāng)前的業(yè)務(wù)場(chǎng)景是否需要可重入的分布式鎖。

Redis只要解決這兩個(gè)問(wèn)題,就能實(shí)現(xiàn)重入鎖了:

怎么保存當(dāng)前持有的線程

怎么維護(hù)加鎖次數(shù)(即重入了多少次)

實(shí)現(xiàn)一個(gè)可重入的分布式鎖,我們可以參考JDK的ReentrantLock的設(shè)計(jì)思想。實(shí)際上,可以直接使用Redisson框架,它是支持可重入鎖的。

10.Redis主從復(fù)制導(dǎo)致的坑

實(shí)現(xiàn)Redis分布式鎖的話,要注意Redis主從復(fù)制的坑。因?yàn)镽edis一般都是集群部署的:

08cf4084-873d-11ed-bfe3-dac502259ad0.png

如果線程一在Redis的master節(jié)點(diǎn)上拿到了鎖,但是加鎖的key還沒(méi)同步到slave節(jié)點(diǎn)。恰好這時(shí),master節(jié)點(diǎn)發(fā)生故障,一個(gè)slave節(jié)點(diǎn)就會(huì)升級(jí)為master節(jié)點(diǎn)。線程二就可以獲取同個(gè)key的鎖啦,但線程一也已經(jīng)拿到鎖了,鎖的安全性就沒(méi)了。

為了解決這個(gè)問(wèn)題,Redis作者 antirez提出一種高級(jí)的分布式鎖算法:Redlock。Redlock核心思想是這樣的:

搞多個(gè)Redis master部署,以保證它們不會(huì)同時(shí)宕掉。并且這些master節(jié)點(diǎn)是完全相互獨(dú)立的,相互之間不存在數(shù)據(jù)同步。同時(shí),需要確保在這多個(gè)master實(shí)例上,是與在Redis單實(shí)例,使用相同方法來(lái)獲取和釋放鎖。

我們假設(shè)當(dāng)前有5個(gè)Redis master節(jié)點(diǎn),在5臺(tái)服務(wù)器上面運(yùn)行這些Redis實(shí)例。

08dcc632-873d-11ed-bfe3-dac502259ad0.png

RedLock的實(shí)現(xiàn)步驟如下:

獲取當(dāng)前時(shí)間,以毫秒為單位。

按順序向5個(gè)master節(jié)點(diǎn)請(qǐng)求加鎖??蛻舳嗽O(shè)置網(wǎng)絡(luò)連接和響應(yīng)超時(shí)時(shí)間,并且超時(shí)時(shí)間要小于鎖的失效時(shí)間。(假設(shè)鎖自動(dòng)失效時(shí)間為10秒,則超時(shí)時(shí)間一般在5-50毫秒之間,我們就假設(shè)超時(shí)時(shí)間是50ms吧)。如果超時(shí),跳過(guò)該master節(jié)點(diǎn),盡快去嘗試下一個(gè)master節(jié)點(diǎn)。

客戶端使用當(dāng)前時(shí)間減去開(kāi)始獲取鎖時(shí)間(即步驟1記錄的時(shí)間),得到獲取鎖使用的時(shí)間。當(dāng)且僅當(dāng)超過(guò)一半(N/2+1,這里是5/2+1=3個(gè)節(jié)點(diǎn))的Redis master節(jié)點(diǎn)都獲得鎖,并且使用的時(shí)間小于鎖失效時(shí)間時(shí),鎖才算獲取成功。(如上圖,10s> 30ms+40ms+50ms+4m0s+50ms)

如果取到了鎖,key的真正有效時(shí)間就變啦,需要減去獲取鎖所使用的時(shí)間。

如果獲取鎖失?。](méi)有在至少N/2+1個(gè)master實(shí)例取到鎖,有或者獲取鎖時(shí)間已經(jīng)超過(guò)了有效時(shí)間),客戶端要在所有的master節(jié)點(diǎn)上解鎖(即便有些master節(jié)點(diǎn)根本就沒(méi)有加鎖成功,也需要解鎖,以防止有些漏網(wǎng)之魚(yú))。

簡(jiǎn)化下步驟就是:

按順序向5個(gè)master節(jié)點(diǎn)請(qǐng)求加鎖

根據(jù)設(shè)置的超時(shí)時(shí)間來(lái)判斷,是不是要跳過(guò)該master節(jié)點(diǎn)。

如果大于等于3個(gè)節(jié)點(diǎn)加鎖成功,并且使用的時(shí)間小于鎖的有效期,即可認(rèn)定加鎖成功啦。

如果獲取鎖失敗,解鎖!

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 代碼
    +關(guān)注

    關(guān)注

    30

    文章

    4723

    瀏覽量

    68236
  • Redis
    +關(guān)注

    關(guān)注

    0

    文章

    370

    瀏覽量

    10830

原文標(biāo)題:Redis 分布式鎖的 10 個(gè)坑,千萬(wàn)別踩了!

文章出處:【微信號(hào):小林coding,微信公眾號(hào):小林coding】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    redis分布式場(chǎng)景實(shí)現(xiàn)

    今天帶大家深入剖析Redis分布式,徹底搞懂它。 場(chǎng)景 既然要搞懂Redis分布式
    的頭像 發(fā)表于 09-25 17:09 ?684次閱讀

    在 Java 中利用 redis 實(shí)現(xiàn)個(gè)分布式服務(wù)

    在 Java 中利用 redis 實(shí)現(xiàn)個(gè)分布式服務(wù)
    發(fā)表于 07-05 13:14

    Redis 分布式的正確實(shí)現(xiàn)方式

    分布式般有三種實(shí)現(xiàn)方式:1. 數(shù)據(jù)庫(kù)樂(lè)觀;2. 基于Redis分布式
    的頭像 發(fā)表于 05-31 14:19 ?3559次閱讀

    Redis分布式真的安全嗎?

    今天我們來(lái)聊Redis分布式。
    的頭像 發(fā)表于 11-02 14:07 ?971次閱讀

    分析闡述Redis分布式10個(gè)

    日常開(kāi)發(fā)中,經(jīng)常會(huì)碰到秒殺搶購(gòu)等業(yè)務(wù)。為了避免并發(fā)請(qǐng)求造成的庫(kù)存超賣(mài)等問(wèn)題,我們般會(huì)用到Redis分布式。
    的頭像 發(fā)表于 01-13 14:12 ?1657次閱讀

    Redis分布式10個(gè)

    說(shuō)到實(shí)現(xiàn)Redis分布式,很多小伙伴馬上就會(huì)想到setnx+ expire命令。也就是說(shuō),先用setnx來(lái)?yè)?b class='flag-5'>鎖,如果搶到之后,再用ex
    的頭像 發(fā)表于 07-29 16:31 ?544次閱讀
    <b class='flag-5'>Redis</b><b class='flag-5'>分布式</b><b class='flag-5'>鎖</b>的<b class='flag-5'>10</b><b class='flag-5'>個(gè)</b><b class='flag-5'>坑</b>

    深入理解redis分布式

    系統(tǒng)不同進(jìn)程共同訪問(wèn)共享資源的的實(shí)現(xiàn)。如果不同的系統(tǒng)或同一個(gè)系統(tǒng)的不同主機(jī)之間共享了某個(gè)臨界資源,往往需要互斥來(lái)防止彼此干擾,以保證致性。 業(yè)界流行的
    的頭像 發(fā)表于 10-08 14:13 ?888次閱讀
    深入理解<b class='flag-5'>redis</b><b class='flag-5'>分布式</b><b class='flag-5'>鎖</b>

    redis分布式如何實(shí)現(xiàn)

    的情況,分布式的作用就是確保在同時(shí)間只有個(gè)客戶端可以訪問(wèn)共享資源,從而保證數(shù)據(jù)的致性和正
    的頭像 發(fā)表于 11-16 11:29 ?490次閱讀

    redis分布式可能出現(xiàn)的問(wèn)題

    Redis分布式種常用的機(jī)制,用于解決多個(gè)進(jìn)程或多臺(tái)服務(wù)器對(duì)共享資源的并發(fā)訪問(wèn)問(wèn)題。然而,由于
    的頭像 發(fā)表于 11-16 11:40 ?1332次閱讀

    redis分布式死鎖處理方案

    引言: 隨著分布式系統(tǒng)的廣泛應(yīng)用,尤其是在大規(guī)模并發(fā)操作下,對(duì)并發(fā)控制的需求越來(lái)越高。Redis分布式作為種常見(jiàn)的
    的頭像 發(fā)表于 11-16 11:44 ?1664次閱讀

    redis分布式的應(yīng)用場(chǎng)景有哪些

    系統(tǒng)中,多個(gè)節(jié)點(diǎn)可能同時(shí)訪問(wèn)共享資源,例如數(shù)據(jù)庫(kù)、文件系統(tǒng)等。使用Redis分布式可以保證在同時(shí)刻只有
    的頭像 發(fā)表于 12-04 11:21 ?1357次閱讀

    redis分布式個(gè)方法

    Redis種高性能的分布式緩存和鍵值存儲(chǔ)系統(tǒng),它提供了種可靠的分布式解決方案。在
    的頭像 發(fā)表于 12-04 11:22 ?1378次閱讀

    如何實(shí)現(xiàn)Redis分布式

    Redis個(gè)開(kāi)源的內(nèi)存數(shù)據(jù)存儲(chǔ)系統(tǒng),可用于高速讀寫(xiě)操作。在分布式系統(tǒng)中,為了保證數(shù)據(jù)的致性和避免競(jìng)態(tài)條件,常常需要使用
    的頭像 發(fā)表于 12-04 11:24 ?635次閱讀

    redis分布式可能出現(xiàn)的問(wèn)題及解決方案

    。 誤刪 Redis分布式通常使用SETNX命令創(chuàng)建,并使用DEL命令刪除。在高并發(fā)情況下,可能會(huì)發(fā)生誤刪的情況,即
    的頭像 發(fā)表于 12-04 11:29 ?890次閱讀

    redis分布式的缺點(diǎn)

    Redis分布式種常見(jiàn)的用于解決分布式系統(tǒng)中資源爭(zhēng)用問(wèn)題的解決方案。盡管Redis
    的頭像 發(fā)表于 12-04 14:05 ?1170次閱讀