0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

在電纜分配系統(tǒng)中實現(xiàn)的回報和挑戰(zhàn)

星星科技指導員 ? 來源:ADI ? 作者:Patrick Pratt and Fra ? 2023-01-04 11:45 ? 次閱讀

作者:Patrick Pratt and Frank Kearney

美國的第一個電纜系統(tǒng)在50年代初開始出現(xiàn)。即使技術(shù)和分配方法的快速變化,電纜仍保持著作為數(shù)據(jù)分配渠道的突出地位。新技術(shù)已經(jīng)在現(xiàn)有的有線網(wǎng)絡(luò)上分層。本文重點介紹這種演變的一個方面——功率放大器(PA)數(shù)字預(yù)失真(DPD)。這是許多參與蜂窩系統(tǒng)網(wǎng)絡(luò)的人都會熟悉的術(shù)語。將技術(shù)過渡到電纜在電源效率和性能方面帶來了巨大的好處。這些好處帶來了巨大的挑戰(zhàn);本文深入探討了其中的一些挑戰(zhàn),并概述了如何解決這些問題。

了解要求

當功率放大器在其非線性區(qū)域工作時,其輸出會失真。失真會影響帶內(nèi)性能,還可能導致不需要的信號溢出到相鄰通道中。溢出效應(yīng)在無線蜂窩應(yīng)用中尤為重要,相鄰信道泄漏比(簡稱ACLR)受到嚴格規(guī)定和控制。突出的控制技術(shù)之一是在信號到達功率放大器之前對信號進行數(shù)字整形或預(yù)失真,從而消除PA中的非線性。

電纜環(huán)境非常不同。首先,它可以被視為一個封閉的環(huán)境;電纜中發(fā)生的事情會留在電纜中!運營商擁有并控制整個頻譜。帶外 (OOB) 失真不是主要問題。然而,帶內(nèi)失真至關(guān)重要。服務(wù)提供商必須確保最高質(zhì)量的帶內(nèi)傳輸管道,以便他們能夠利用最大的數(shù)據(jù)吞吐量。他們確保這一點的方法之一是嚴格在其線性區(qū)域內(nèi)運行電纜功率放大器。這種工作模式的代價是電源效率非常差。

pYYBAGO09kOAXCS2AABtp3qmZ-w777.png?la=en&imgver=1

圖1.電纜功率放大器驅(qū)動器的功率效率。

圖1概述了典型的電纜應(yīng)用。雖然系統(tǒng)消耗近 80 W 的功率,但僅提供 2.8 W 的信號功率。功率放大器是效率非常低的A類架構(gòu)。最大瞬時峰值效率可以計算為50%(當信號包絡(luò)處于最大值時,假設(shè)感性負載)。如果PA要完全在其線性區(qū)域內(nèi)工作,那么考慮到電纜信號的非常高的峰均比(通常為14 dB),則意味著放大器需要在壓縮開始以下平均14 dB的頻率工作,從而確保即使在信號峰值處也不會發(fā)生信號壓縮?;赝伺c放大器工作效率之間存在直接關(guān)系。由于放大器后退14 dB以適應(yīng)全范圍的電纜信號,因此工作效率將降低10–14/10.因此,運行效率從其理論最大值 50% 下降到 10–14/10× 50% = 2%。圖 2 提供了概述。

poYBAGO09kSAe1_VAACya1VbUyM462.png?la=en&imgver=2

圖2.高峰均比推動了退避操作模式,并導致效率大幅下降。

總之,電源效率是主要問題。失去的電力會產(chǎn)生成本影響,但同樣重要的是,它也消耗了電纜分配系統(tǒng)中的稀缺資源。隨著有線電視運營商添加更多功能和服務(wù),他們需要更多的處理,并且該處理的功率可能會限制在現(xiàn)有的功率預(yù)算內(nèi)。如果可以從PA效率低下中恢復浪費的功率,則可以將其重新分配給這些新功能。

針對PA效率低下提出的解決方案是數(shù)字預(yù)失真。這是一種在整個無線蜂窩行業(yè)中普遍采用和采用的方法。DPD允許用戶在更高效但更非線性的區(qū)域操作PA,然后在數(shù)據(jù)發(fā)送到PA之前先發(fā)制人地校正數(shù)字域中的失真。DPD本質(zhì)上是在數(shù)據(jù)到達PA之前對其進行整形,以抵消PA產(chǎn)生的失真,從而擴展PA的線性范圍,如圖3所示。擴展的線性范圍可用于支持更高質(zhì)量的處理,提供更低的調(diào)制錯誤率 (MER),1或允許PA以降低的偏置設(shè)置運行,從而節(jié)省功耗。盡管DPD已廣泛用于無線蜂窩基礎(chǔ)設(shè)施,但在電纜環(huán)境中實施DPD具有獨特且具有挑戰(zhàn)性的要求。

pYYBAGO09kaAbRlCAADur85zqnI924.png?la=en&imgver=2

圖3.數(shù)字預(yù)失真概述。

如圖4所示,電纜應(yīng)用的實際運行效率約為3.5%!實施DPD可使系統(tǒng)的功率要求從80 W降至61 W,從而節(jié)省19 W的功率,從而降低24%。以前,每個 PA 需要 17.5 W 的功率;現(xiàn)在下降到12.8 W。

poYBAGO09keAbNGFAABowjfDAIU459.png?la=en&imgver=1

圖4.通過DPD實現(xiàn)節(jié)能概述。

執(zhí)行工作的挑戰(zhàn)

DPD的價值是顯而易見的,但電纜應(yīng)用對其實施提出了許多獨特的挑戰(zhàn)。必須在現(xiàn)有資源范圍內(nèi)應(yīng)對這些技術(shù)挑戰(zhàn)。例如,解決方案本身必須具有高能效,因為如果節(jié)省的功率轉(zhuǎn)化為為解決方案供電,則優(yōu)化PA效率的價值不大。同樣,數(shù)字處理資源需要適當,以便它們可以有效地駐留在當前的FPGA架構(gòu)中。具有非標準硬件要求和大量架構(gòu)更改的非常大/復雜的算法不太可能得到適應(yīng)。

超寬帶寬

電纜應(yīng)用與無線蜂窩環(huán)境之間最突出的區(qū)別可能是操作帶寬。在電纜中,需要線性化的帶寬約為1.2 GHz。頻譜從直流開始僅54 MHz,并且信號帶寬大于信道中心頻率,這一事實使寬帶寬挑戰(zhàn)更加復雜。我們必須記住,通過將PA驅(qū)動到其非線性工作區(qū)域來實現(xiàn)節(jié)能;這提供了更好的效率,但代價是生成非線性產(chǎn)品。DPD必須消除PA產(chǎn)生的非線性,特別關(guān)注那些回落到所需信號帶內(nèi)的非線性。這給電纜應(yīng)用帶來了獨特的挑戰(zhàn)。

pYYBAGO09kmAdsJhAACinwWa5a4108.png?la=en&imgver=2

圖5.傳統(tǒng)窄帶解釋中的諧波失真項。

圖5概述了經(jīng)過非線性放大級的傳統(tǒng)窄帶(窄帶將在本節(jié)后面定義)上變頻基帶信號的寬帶諧波失真項。非線性PA輸出通常由冪級數(shù)表達式描述,例如Volterra級數(shù)具有以下形式:

poYBAGO09kqANEWaAAAPWxNHPdQ508.png?la=en&imgver=2

這可以理解為泰勒冪級數(shù)的推廣,包括記憶效應(yīng)。需要注意的一點是,每個非線性項(k = 1,2,...,K)都會產(chǎn)生多個諧波失真(HD)產(chǎn)物。例如,5千訂單有 3 個術(shù)語: 5千在 1 點訂購圣諧波,5千在 3 點訂購RD諧波,和 5千在 5 點訂購千諧波。另請注意,諧波帶寬是其階數(shù)的倍數(shù);例如,3RD-訂單項是激勵帶寬的三倍。

在電纜中,與其說是大信號帶寬,不如說是它在頻譜上的位置(距離直流僅54 MHz),這對DPD提出了特殊的挑戰(zhàn)。諧波失真發(fā)生在所有非線性系統(tǒng)中;電纜DPD的重點是落在帶內(nèi)的諧波失真。從圖5可以看出,在傳統(tǒng)的窄帶應(yīng)用中,重點將是3RD- 和 5千-階諧波。盡管創(chuàng)建了其他波段,但它們不屬于感興趣的頻帶,可以通過常規(guī)濾波將其刪除。我們可以通過分數(shù)帶寬來定義寬帶和窄帶應(yīng)用,其中分數(shù)帶寬定義為

pYYBAGO09kuAfUFEAAAFae14COM049.png?la=en&imgver=1

(fn= 最高頻率,f1= 最低頻率,并且fc= 中心頻率)。當分數(shù)帶寬大于 1 時,應(yīng)用可被視為寬帶。大多數(shù)蜂窩應(yīng)用的分數(shù)帶寬為 0.5 或更低。因此,它們的HD行為符合圖6所示的特性。

poYBAGO09kyAG3qyAAAdhxTk5M4579.png?la=en&imgver=1

圖6.窄帶簡化;僅產(chǎn)品圍繞 1圣需要考慮諧波。

對于這種窄帶系統(tǒng),只有帶內(nèi)畸變在1圣諧波需要由DPD消除,因為可以使用帶通濾波器來去除所有其他產(chǎn)物。另請注意,由于沒有偶數(shù)階產(chǎn)品落在帶內(nèi),因此 DPD 只需處理奇數(shù)訂單項。

在電纜應(yīng)用中,我們可以近似fn~1200兆赫,fl~50 MHz,以及fc~575 MHz,因此我們的分數(shù)帶寬為2。要確定需要校正的最小HD階數(shù),公式

pYYBAGO09k2AC9b0AAAFBwkMoms009.png?la=en&imgver=1

(K最小是要考慮的最低非線性階數(shù))可以使用,或者數(shù)值上為 50 MHz × 2 = 100 MHz,小于 1200 MHz - 因此 2德·-訂單 HD 完全在操作范圍內(nèi),必須進行校正。因此,如果決定在非常安全和線性的工作之外操作電纜PA,則產(chǎn)生的諧波失真將如圖7所示。

poYBAGO09k6ANGb5AABtSHsvPzk109.png?la=en&imgver=2

圖7.寬帶諧波失真對寬帶電纜應(yīng)用的影響。

與僅關(guān)注奇次諧波的無線蜂窩相比,在電纜應(yīng)用中,偶數(shù)項和奇數(shù)項都落在帶內(nèi),從而產(chǎn)生多個重疊的失真區(qū)域。這對任何DPD解決方案的復雜性和精密度都有一些嚴重影響,因為算法必須超越簡單的窄帶假設(shè)。DPD解決方案必須適應(yīng)每個諧波失真的階數(shù)。

在窄帶系統(tǒng)中,偶數(shù)階項可以忽略,奇數(shù)階在感興趣的波段內(nèi)各產(chǎn)生 1 項。電纜應(yīng)用中的DPD必須關(guān)注奇次和偶次諧波失真,并且還必須考慮每個階可以有多個重疊的帶內(nèi)元件。

定位諧波失真校正

考慮到在復雜基帶上完成處理的傳統(tǒng)窄帶DPD解決方案,我們主要關(guān)注的是對稱位于載波周圍的諧波失真。在寬帶電纜系統(tǒng)中,盡管對于位于 1 周圍的那些項保持了這種對稱性。圣諧波,這種對稱性不再適用于高次諧波產(chǎn)物。

pYYBAGO09lCAeirSAAC0z6_bBhk909.png?la=en&imgver=2

圖8.請注意寬帶DPD的復雜基帶處理中的頻偏要求。

如圖8所示,傳統(tǒng)的窄帶DPD是在復基帶上完成的。在這些情況下,只有 1圣諧波產(chǎn)物落在頻帶中,因此其基帶表示直接轉(zhuǎn)換為RF。當我們考慮寬帶電纜DPD時,較高的諧波失真必須是頻率偏移,以便上變頻后的基帶表示在實際RF頻譜中正確定位。

環(huán)路帶寬限制:

閉環(huán)DPD系統(tǒng)采用傳輸和觀察路徑。在理想化的模型中,兩條路徑都不會受到帶寬限制,并且兩條路徑都足夠?qū)捯酝ㄟ^所有DPD項;也就是說,帶內(nèi)和帶外項都將傳遞。

poYBAGO09lGAV3_GAADFMW-OPtQ505.png?la=en&imgver=1

圖9.理想化的DPD實現(xiàn),沒有帶寬限制。

圖 9 概述了 DPD 實現(xiàn)。在理想情況下,從數(shù)字上變頻器(DUC)通過DPD到DAC和PA的路徑將沒有帶寬限制。同樣,觀察路徑上的ADC將數(shù)字化全帶寬(請注意,為了便于說明,我們顯示了2×帶寬的信號路徑;在某些無線蜂窩應(yīng)用中,可能會擴展到3×至5×)。理想的實現(xiàn)方案是DPD產(chǎn)生帶內(nèi)和帶外項,完全消除PA引入的失真。重要的是要注意,為了準確消除,項的創(chuàng)建遠遠超出了目標信號的帶寬。

在實際實現(xiàn)中,信號路徑具有帶寬限制,會改變理想實現(xiàn)的DPD性能。

pYYBAGO09lOAMnBhAADhxqLOTPc300.png?la=en&imgver=1

圖 10.由于信號路徑中的帶寬限制限制了OOB項,DPD的性能下降。

在電纜應(yīng)用中,帶寬限制可能來自多種來源:FPGA和DAC之間的JESD鏈路、DAC抗成像濾波器和PA輸入匹配。這些限制最顯著的影響是 OOB 性能。如圖10所示的仿真所示,DPD無法校正OOB失真。在電纜中,OOB 失真會導致帶內(nèi)性能下降,這可能特別重要;信號路徑中的帶寬限制會影響帶內(nèi)性能。

電纜環(huán)境的獨特之處在于運營商擁有整個頻譜。超出目標頻段(54 MHz至1218 MHz)的發(fā)射屬于頻譜的一部分,不被其他人使用,并且由于高頻下的固有電纜損耗,也會受到衰減的影響。觀察路徑只需要關(guān)注監(jiān)視操作范圍內(nèi)發(fā)生的事情。

這里需要作出重要的區(qū)分;帶外下降的排放不值得關(guān)注,但帶外產(chǎn)生并向下延伸回帶內(nèi)的排放是問題。因此,盡管OOB排放不是問題,但產(chǎn)生它們的術(shù)語是。該實現(xiàn)方式與無線蜂窩應(yīng)用非常不同,無線蜂窩應(yīng)用的觀察帶寬要求通常為工作頻段的3×至5×。在電纜中,重點是帶內(nèi)性能,只需考慮OOB項對帶內(nèi)性能的影響。

電纜 DPD 只需對帶內(nèi)產(chǎn)品進行校正:對于 DOCSIS 3,則為 54 MHz 至 1218 MHz。DPD 產(chǎn)生 2 個德·/ PRD, ...取消條款。雖然我們只需要通過電纜帶寬進行校正,但在DPD執(zhí)行器中,這些術(shù)語擴展到更寬的帶寬(例如,3RD階數(shù)擴展到 3× 1218 MHz)。為了保持傳統(tǒng)DPD自適應(yīng)算法的穩(wěn)定性,應(yīng)在循環(huán)中保留這些OOB項。DPD項的任何濾波都會破壞自適應(yīng)算法的穩(wěn)定性。在電纜系統(tǒng)中存在頻帶限制,因此傳統(tǒng)算法可能會失敗。

DPD 和電纜傾斜補償

與所有其他傳輸介質(zhì)一樣,電纜會引入衰減。通常,這種衰減可以視為電纜質(zhì)量、電纜運行距離和傳輸頻率的函數(shù)。如果要在電纜的接收端實現(xiàn)相對均勻的接收信號強度,則在整個操作范圍內(nèi),則必須在發(fā)射側(cè)添加預(yù)加重(傾斜)。傾斜可以看作是電纜的反傳遞函數(shù)。它應(yīng)用與傳輸頻率成比例的預(yù)加重或整形。

整形通過位于功率放大器前面的稱為傾斜補償器的低功耗無源模擬均衡器實現(xiàn)。在高頻下施加很少或沒有衰減,而最大衰減應(yīng)用于較低頻率。傾斜補償器輸出端的信號在整個工作范圍內(nèi)可能具有高達 22 dB 的電平變化。

poYBAGO09lSAOsG8AABAWcD4o9I789.png?la=en&imgver=1

圖 11.傾斜補償器實現(xiàn)。

傾斜補償器對信號進行整形,并在通過PA處理信號時保持該整形輪廓。傳統(tǒng)的DPD實現(xiàn)會將整形視為一種損傷,并試圖對其進行校正,因為DPD是一個(非線性)均衡器。似乎可以合理地建議,如果將傾斜的反轉(zhuǎn)添加到觀察路徑中,它將減輕影響。然而,事實并非如此。因為PA是非線性的,所以交換性不成立,換句話說,

pYYBAGO09lWAJcEMAAAF1PCyH2g970.png?la=en&imgver=1

(

PA

是功率放大器的型號,

T

是傾斜補償器的型號)。

為了獲得最佳操作,DPD處理模塊需要明確了解將在PA輸入端呈現(xiàn)的信號。在電纜DPD應(yīng)用中,必須保持傾斜補償,同時讓DPD算法對PA進行建模。這帶來了一些非常獨特和困難的挑戰(zhàn)。我們需要一個低成本、穩(wěn)定的解決方案,不能平衡傾斜。雖然本文無法透露解決方案的性質(zhì),但ADI公司已經(jīng)找到了針對此問題的創(chuàng)新解決方案,可能會在以后的出版物中詳細介紹。

DPD 和電纜 PA 架構(gòu)

如圖4所示,典型的電纜應(yīng)用將有一個DAC分離的輸出,并提供給四個獨立的PA。為了最大限度地節(jié)省功耗,需要在所有這些PA上實現(xiàn)DPD。一種可能的解決方案是實現(xiàn)四個獨立的DPD和DAC模塊。該解決方案有效,但效率降低,系統(tǒng)實施成本增加。額外的硬件有一美元和電力成本。

并非所有PA都是平等的,盡管工藝匹配(在制造過程中)可能會提供具有相似個性的單元,但差異將持續(xù)存在,并且可能會隨著老化,溫度和電源變化而變大。話雖如此,使用一個PA作為主設(shè)備并為其開發(fā)優(yōu)化的DPD,然后將其應(yīng)用于其他PA,確實可以帶來系統(tǒng)性能優(yōu)勢,如圖12中的仿真結(jié)果所示。

左側(cè)的曲線表示未應(yīng)用DPD時的PA性能。非線性操作模式會導致失真,這反映在MER中1性能,范圍為 37 dBc 至 42 dBc。閉環(huán)DPD通過觀察主PA的輸出來施加;圖表右側(cè)的綠色圖顯示了增強的性能。DPD已經(jīng)校正了PA失真,結(jié)果是整體性能已經(jīng)改變,以提供65 dBc至67 dBc的MER。中間的其余曲線顯示了從PA的性能,即基于主PA校正的PA??梢钥闯?,僅通過觀察一個PA來實現(xiàn)閉環(huán)DPD有利于所有PA的性能。但是,從屬PA的性能仍然具有將失敗的操作點。從PA的性能范圍為38 dBc至67 dBc。寬范圍本身不是問題,但該范圍的一部分低于可接受的工作閾值(電纜通常為 45 dBc)。

poYBAGO09leACu4iAADVBsLdBdc343.png?la=en&imgver=1

圖 12.具有多個PA的單個DPD(模擬結(jié)果)。

電纜中獨特的系統(tǒng)架構(gòu)給DPD帶來了額外的挑戰(zhàn)。優(yōu)化性能需要閉環(huán)DPD實現(xiàn)。然而,傳統(tǒng)思維認為,要在電纜中做到這一點,需要在每條PA路徑中增加硬件。最佳解決方案需要為每個PA提供閉環(huán)DPD的增強功能,同時又不增加硬件成本。

利用智能算法解決挑戰(zhàn)

如本文前面所述,電纜DPD給設(shè)計人員帶來了特別獨特和困難的挑戰(zhàn)。挑戰(zhàn)必須得到解決,但在電源和硬件的限制下,以便優(yōu)勢不被侵蝕;如果PA功率用于額外的DAC或FPGA,則節(jié)省PA功率幾乎沒有價值。同樣,節(jié)能必須與硬件成本相平衡。ADI公司將高性能模擬信號處理與高級算法實現(xiàn)相結(jié)合,解決了這一挑戰(zhàn)。

poYBAGO09liADcnDAABaEV7xfU8963.png?la=en&imgver=1

圖 13.使用高級轉(zhuǎn)換器和智能算法實現(xiàn)電纜DPD。

ADI實現(xiàn)的高級概述如圖13所示。該解決方案可以被視為具有三個關(guān)鍵要素:使用先進的轉(zhuǎn)換器和時鐘產(chǎn)品,支持全面信號鏈監(jiān)控/控制的架構(gòu),最后是可以利用前者知識提供最佳性能的高級DPD算法。

該算法是解決方案的核心。它利用其對正在處理的信號和信號路徑的傳遞函數(shù)的廣泛了解來塑造輸出,同時調(diào)整信號路徑某些方面的動態(tài)控制。動態(tài)系統(tǒng)解決方案意味著系統(tǒng)設(shè)計人員不僅能夠獲得可觀的節(jié)能效果,而且這些節(jié)能可以直接與性能進行權(quán)衡。該算法是這樣的,一旦用戶定義了 MER1系統(tǒng)必須運行的性能級別,實施系統(tǒng)調(diào)整,以便在所有輸出中實現(xiàn)性能。需要注意的是,該算法還可確保達到性能閾值,同時保持每個PA的最佳功耗;沒有PA需要超過實現(xiàn)目標性能所需的功率。

上一段概述了解決方案實現(xiàn)。算法本身的細節(jié)是ADI專有IP,超出了本文的范圍。SMART算法能夠?qū)W習系統(tǒng)路徑,然后改變通過路徑傳輸?shù)臄?shù)據(jù)的性質(zhì)和路徑本身的特征,以提供最佳結(jié)果。我們將最佳結(jié)果定義為保持MER的質(zhì)量,同時降低功率要求。

路徑特性以及傳輸信號的性質(zhì)是恒定的。該算法具有處理這種動態(tài)適應(yīng)性的自學習能力。更重要的是,適應(yīng)發(fā)生在系統(tǒng)上線時,而不會中斷或扭曲傳輸?shù)牧鳌?/p>

結(jié)論

電纜環(huán)境仍然是提供數(shù)據(jù)服務(wù)的重要基礎(chǔ)設(shè)施。隨著技術(shù)的發(fā)展,頻譜和功率效率的壓力也越來越大。下一代發(fā)展要求不斷增長的需求,并推動更高階的調(diào)制方案和更好的功率效率。這些增強功能必須在不影響系統(tǒng)性能(MER)的情況下實現(xiàn),雖然DPD提供了一種可能的實現(xiàn)途徑,但它在電纜應(yīng)用中的實施帶來了獨特而困難的挑戰(zhàn)。ADI公司開發(fā)了一套完整的系統(tǒng)解決方案來應(yīng)對這些挑戰(zhàn)。該解決方案包括芯片(DAC、ADC 和時鐘)、PA 控制和高級算法。這三種技術(shù)的結(jié)合為用戶提供了一個適應(yīng)性強的解決方案,他們可以輕松地在功耗和性能要求之間進行權(quán)衡,而不會影響。這種軟件定義的解決方案還支持輕松過渡到下一代電纜技術(shù),這些技術(shù)有望包含全雙工(FD)和包絡(luò)跟蹤(ET)。

注1:調(diào)制錯誤率是調(diào)制質(zhì)量的量度。它表示目標符號向量和傳輸?shù)姆栂蛄恐g的差異。MER = 10Log (平均信號功率/平均誤差功率)。它可以被視為衡量安慰中符號放置的準確性的指標。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電源
    +關(guān)注

    關(guān)注

    184

    文章

    17193

    瀏覽量

    247760
  • 放大器
    +關(guān)注

    關(guān)注

    143

    文章

    13431

    瀏覽量

    212168
  • 驅(qū)動器
    +關(guān)注

    關(guān)注

    51

    文章

    7997

    瀏覽量

    145007
收藏 人收藏

    評論

    相關(guān)推薦

    ADI開發(fā)出電纜分配系統(tǒng)帶內(nèi)失真及超寬帶數(shù)字預(yù)失真解決方案

    即使技術(shù)和分配方式迅速發(fā)生變化,但是,電纜作為數(shù)據(jù)分配通道始終保持著重要地位。新技術(shù)現(xiàn)有電纜
    的頭像 發(fā)表于 10-11 09:55 ?9780次閱讀
    ADI開發(fā)出<b class='flag-5'>電纜</b><b class='flag-5'>分配系統(tǒng)</b>帶內(nèi)失真及超寬帶數(shù)字預(yù)失真解決方案

    電纜分配系統(tǒng)用物理發(fā)泡同軸電纜的設(shè)計與制造

    。將物理發(fā)泡技術(shù)用于同軸電纜,使同軸電纜的發(fā)展出現(xiàn)了嶄新局面,物理發(fā)泡同軸電纜在有線電視傳輸領(lǐng)域、移動通信系統(tǒng)、衛(wèi)星通信以及國防重點項目等
    發(fā)表于 05-24 23:45

    PCB上的電源分配系統(tǒng)

    所謂電源分配系統(tǒng)(PDS)是指將電源(Power Source)的功率分配系統(tǒng)各個需要供電的設(shè)備和器件的子系統(tǒng)。在所有的電氣
    發(fā)表于 05-21 08:29

    AllegroPCB PDN電源分配系統(tǒng)分析的功能特色

    AllegroPCB PDN電源分配系統(tǒng)分析隨著超大規(guī)模集成電路工藝的發(fā)展,芯片工作電壓越來越低,而工作速度越來越快,功耗越來越大,單板的密度也越來越高,因此對電源供應(yīng)系統(tǒng)整個工作頻帶內(nèi)的穩(wěn)定性提出了更高的要求。
    發(fā)表于 05-24 08:56

    請問如何測量電源分配系統(tǒng)的階躍響應(yīng)?

    如何測量電源分配系統(tǒng)的階躍響應(yīng)?
    發(fā)表于 04-09 06:08

    非接觸式洗手液分配系統(tǒng)

    器使用超聲波傳感器 hc-sr04檢測手時,這些都是放在容器下方。它會根據(jù)特定時間自動分配所需數(shù)量的消毒劑,然后半秒內(nèi)準備好下一步行動。作者的原型的非接觸式洗手液分配系統(tǒng)如圖1所示。圖1: 作者設(shè)計的非
    發(fā)表于 02-26 11:14

    功率分配系統(tǒng)PDS設(shè)計如何利用旁路電容/去耦電容

    功率分配系統(tǒng)PDS設(shè)計如何利用旁路電容/去耦電容 本應(yīng)用指南闡述了如何設(shè)計面向Virtex™芯片的功率分配系統(tǒng)。涵蓋了功率分配系統(tǒng)和旁路電容或去耦電容的
    發(fā)表于 03-23 10:38 ?24次下載

    CORBA技術(shù)動態(tài)交通分配系統(tǒng)的應(yīng)用

    摘要:介紹了一個分布式計算環(huán)境下可以實時運行的動態(tài)交通分配系統(tǒng)。該系統(tǒng)基于CORBA技術(shù),可進行動態(tài)起迄點出行分布矩陣的估計和預(yù)測,還可以進行系統(tǒng)
    發(fā)表于 03-24 12:47 ?929次閱讀
    CORBA技術(shù)<b class='flag-5'>在</b>動態(tài)交通<b class='flag-5'>分配系統(tǒng)</b><b class='flag-5'>中</b>的應(yīng)用

    什么是汽車的電子制動力分配系統(tǒng)(EBD)

    什么是汽車的電子制動力分配系統(tǒng)(EBD) ABD-自動制動差速器  是制動力系統(tǒng)的一個新產(chǎn)品,它的主要作
    發(fā)表于 03-12 09:09 ?1128次閱讀

    適合視頻分配系統(tǒng)的放大器

    本內(nèi)容向大家提供了適合視頻分配系統(tǒng)的放大器的各種型號
    發(fā)表于 12-12 15:26 ?71次下載
    適合視頻<b class='flag-5'>分配系統(tǒng)</b>的放大器

    mmds無多路微波分配系統(tǒng)概述

    本內(nèi)容介紹了mmds無多路微波分配系統(tǒng)的相關(guān)知識和數(shù)字MMDS發(fā)射機,MMDS是一種點對多點分布、提供寬帶業(yè)務(wù)的無線技術(shù)。它適用于中小企業(yè)用戶和集團用戶。
    發(fā)表于 12-13 11:29 ?2705次閱讀

    無線激光通信網(wǎng)絡(luò)任務(wù)均衡分配系統(tǒng)設(shè)計

    為了提升網(wǎng)絡(luò)任務(wù)分配均衡度,延長網(wǎng)絡(luò)生存周期,提出一種基于負載分割理論的無線激光通信網(wǎng)絡(luò)任務(wù)均衡分配系統(tǒng)設(shè)計方法,首先設(shè)計無線激光通信網(wǎng)絡(luò)任務(wù)均衡分配系統(tǒng)框圖;然后根據(jù)無線激光通信網(wǎng)絡(luò)任務(wù)總完成時間
    發(fā)表于 01-18 15:57 ?0次下載
    無線激光通信網(wǎng)絡(luò)任務(wù)均衡<b class='flag-5'>分配系統(tǒng)</b>設(shè)計

    超寬帶數(shù)字預(yù)失真電纜分配系統(tǒng)應(yīng)用

    電纜系統(tǒng)于20世紀50年代初美國首次問世。即使技術(shù)和分配方式迅速發(fā)生變化,電纜作為數(shù)據(jù)
    發(fā)表于 03-07 10:27 ?1次下載

    功率放大器數(shù)字預(yù)失真電纜分配系統(tǒng)的優(yōu)勢及挑戰(zhàn)

    電纜系統(tǒng)于20世紀50年代初美國首次問世。即使技術(shù)和分配方式迅速發(fā)生變化,電纜作為數(shù)據(jù)
    的頭像 發(fā)表于 04-12 09:10 ?3524次閱讀
    功率放大器數(shù)字預(yù)失真<b class='flag-5'>在</b><b class='flag-5'>電纜</b><b class='flag-5'>分配系統(tǒng)</b><b class='flag-5'>中</b>的優(yōu)勢及<b class='flag-5'>挑戰(zhàn)</b>

    PCB上的電源分配系統(tǒng)到底是什么

    通常我們所示的,電源分配系統(tǒng)(PDS)是指將電源(Power Source)的功率分配系統(tǒng)各個需要供電的設(shè)備和器件的子系統(tǒng)。在所有的電氣
    的頭像 發(fā)表于 10-11 10:44 ?5840次閱讀
    PCB上的電源<b class='flag-5'>分配系統(tǒng)</b>到底是什么