0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

新型梯度“單晶”富鋰正極材料

清新電源 ? 來源:清新電源 ? 2023-02-01 09:04 ? 次閱讀

研究背景

富鋰層狀氧化物(LLOs)被認(rèn)為是最有前景的下一代正極材料。但目前為了滿足商業(yè)化的要求,LLOs大多制備成二次球(SSA)的形式。然而,SSA-LLOs在長時間循環(huán)后會產(chǎn)生裂紋,導(dǎo)致顆粒粉碎和快速的性能退化。此外,電解液沿裂紋的滲透會進(jìn)一步引起劇烈的活化和各種副反應(yīng)的積累,進(jìn)一步加快結(jié)構(gòu)和性能的退化。

制備微米尺寸的“單晶”LLO(SC-LLO)顆粒被認(rèn)為是解決以上問題最有效的策略之一。因為SC-LLO顆粒完整性好,內(nèi)部界面少、機械穩(wěn)定性好和比表面積小,可以抑制長循環(huán)過程中裂紋的產(chǎn)生和層狀到尖晶石相的轉(zhuǎn)變,有利于提高結(jié)構(gòu)穩(wěn)定性和容量保持率。以往的研究表明:對正極材料的元素和結(jié)構(gòu)進(jìn)行合理的梯度設(shè)計,可以協(xié)調(diào)不同的結(jié)構(gòu)特征和性能要求。然而對SC-LLO濃度梯度設(shè)計的報道還比較少。

成果簡介

北京理工的尉海軍教授Advanced Functional Materials上發(fā)表題為“Gradient “Single-Crystal”Li-Rich Cathode Materials for High-Stable Lithium-Ion Batteries”的文章。這項工作通過結(jié)合“單晶”顆粒和梯度結(jié)構(gòu)的高穩(wěn)定性的優(yōu)勢,通過調(diào)整共沉淀和熔鹽燒結(jié)技術(shù),設(shè)計并制備了具有全濃度梯度的SC-LLO(GSC-LLO)。GSC-LLO具有從單晶顆粒中心到表面逐漸減少的Mn和增加的Ni含量。GSC-LLO的循環(huán)穩(wěn)定性、倍率性能和安全性顯著提高。此外,作者還揭示了濃度梯度在優(yōu)化“單晶”富鋰正極材料在結(jié)構(gòu)和化學(xué)穩(wěn)定性方面的重要作用。

圖文導(dǎo)讀

材料合成:首先,通過共沉淀法合成了具有濃度梯度的前驅(qū)體Mn0.63Ni0.26Co0.11(OH)2,其次,將前驅(qū)體、KCl和LiOH以12.2的摩爾比混合,然后在900℃下煅燒7 h,再在1000℃下煅燒1 h。冷卻后,用去離子水清洗樣品,并烘干。最后,將樣品在300℃下再加熱5 h,得到GSC-LLO (Li1.16Mn0.54Ni0.21Co0.08O2)。作為比較,采用類似的方法合成了非濃度梯度的“單晶”LLO (SC-LLO) Li1.2Mn0.57Ni0.16Co0.07O2。

00edf0d8-a1c6-11ed-bfe3-dac502259ad0.jpg

圖 1、a) GSC-LLO的SEM圖像。b)基于兩相模型對GSC-LLO的XRD圖譜進(jìn)行Rietveld精修。c-f)在I (c,d)和II (e,f)兩個典型的劈裂“單晶”顆粒中,Mn和Ni沿紅色箭頭的截面EDS線掃描。g)同步加速器軟x射線成像對“單晶”粒子進(jìn)行三維重建,從粒子中心選取赤道切片。h) Mn和Ni在(g)中標(biāo)記的切片中的二維分布。

如圖1a所示,GSC-LLO呈塊狀顆粒形態(tài),具有良好的分散性,尺寸約為1μm,與單晶的特征一致。相比之下, SC-LLO的形貌與GSC-LLO相似,粒徑約為1μm。采用能譜線掃描(EDS)研究了GSC-LLO顆粒截面元素分布(圖1c-f)。可以清楚地看到,Mn的強度從單顆粒的外部到內(nèi)部呈逐漸增加的趨勢,而Ni的強度則相反。因此,Mn和Ni在GSC-LLO顆粒中呈現(xiàn)出明顯濃度梯度。而Co的含量從中心的8%到表面的13%,沒有明顯的梯度。與GSC-LLO相比,SC-LLO顆粒截面中Mn、Ni和Co的強度均勻分布。采用無損同步輻射軟x射線成像技術(shù)對“單晶”進(jìn)行了檢測,圖1g顯示出的結(jié)果與前面吻合。

01130e54-a1c6-11ed-bfe3-dac502259ad0.jpg

圖 2、a)前兩個循環(huán)中GSC-LLO的原位XRD圖。b–d)(003)和(101)峰的原位XRD放大圖,以及(d)相應(yīng)的時間-電壓曲線。e、 f)SC-LLO和GSC-LLO在最初的兩個循環(huán)中晶格參數(shù)a、c和晶胞體積V的變化圖。g、h)在首圈循環(huán)后2.0V的放電狀態(tài)下,(g)SC-LLO和(h)GSC-LLO的TEY模式下的Mn L2,3-邊XAS圖。

圖2a為GSC-LLO在前兩個循環(huán)的原位XRD圖。在低于4.4 V的初始充電階段,(003)峰移至較低2θ,這與Li層中Li+脫出使O層之間的靜電斥力增加導(dǎo)致沿c軸方向的層間距離擴大有關(guān)。相反,(101)峰移至較高2θ,這與TM離子氧化后離子半徑減小導(dǎo)致沿a軸方向?qū)娱g距離縮小有關(guān)。而在充電結(jié)束前的階段,(003)和(101)峰沒有移位,這與Li+從TM層中脫出和氧離子氧化后Li2MnO3的活化行為相對應(yīng)。在放電階段,(003)和(101)峰從充電階段結(jié)束開始出現(xiàn)相反的位移現(xiàn)象,表明這一結(jié)構(gòu)演化是可逆的。

此外,通過原位XRD計算了兩種LLOs在電化學(xué)循環(huán)過程中電池參數(shù)的詳細(xì)結(jié)構(gòu)變化。如圖2e所示,SC-LLO和GSC-LLO對電池參數(shù)a和c的變化行為相似,a的減小/增大與TMs的氧化/還原有關(guān),c的增大/減小與Li層間距的擴大/收縮有關(guān),表明a和c的變化與(101)和(003)峰的移位一致。圖2g,h分別為SC-LLO和GSC-LLO在2.0 V首圈放電狀態(tài)下的Mn L2,3-edge圖可以看出,盡管由于Li2MnO3的激活,Mn與原始狀態(tài)相比部分被還原,但SC-LLO和GSC-LLO中的大多數(shù)Mn離子仍然表現(xiàn)出+4價。

而GSC-LLO中形成的Mn2+離子較少,平均價為+3.6,高于SC-LLO中的+3.5。GSC-LLO中Mn平均價的增加可以歸因于濃度梯度設(shè)計。由于GSC-LLO分布在外部區(qū)域的Mn含量較SC-LLO低,因此Li2MnO3活化后Mn價態(tài)的降低不嚴(yán)重。GSC-LLO比SC-LLO具有更高的電化學(xué)穩(wěn)定性。

0142ba1e-a1c6-11ed-bfe3-dac502259ad0.jpg

圖 3、a) SC-LLO和GSC-LLO在0.1 C (1 C = 200 mA g?1)2.0-4.8 V的首圈循環(huán)充放電曲線。b)首圈dQ/dV曲線。c) SC-LLO和GSC-LLO在2.0-4.8 V ,0.1 C下循環(huán)100圈的放電容量,插圖是能量密度對比。d) SC-LLO和GSC-LLO在0.1-3C的倍率性能。e)SC-LLO和GSC-LLO在首圈循環(huán)充電(插圖)和放電過程中的Li+擴散系數(shù)。

圖3a中SC-LLO和GSC-LLO都表現(xiàn)出典型的LLO充放電曲線。GSC-LLO的充放電容量(323/237 mAh g–1)相比SC-LLO(353/260 mAh g?1)稍低。其中GSC-LLO的充電曲線相比SC-LLO的斜坡延長和平臺縮短,對應(yīng)了LiTMO2相晶疇比例增加和Li2MnO3相晶疇比例降低。相應(yīng)地,GSC-LLO的dQ/dV曲線在3.6–3.9 V處顯示出與Ni2+/4+和Co3+/4+的氧化還原峰,而SC-LLO的dQ/dV曲線則在~4.5 V處顯示了強Li2MnO3活化峰,在3.3 V左右顯示出Mn4+還原峰。如圖3c所示,盡管GSC-LLO的放電容量在前10個循環(huán)低于SC-LLO,但它可以在接下來的循環(huán)中保持穩(wěn)定。

100次循環(huán)后,SC-LLO和GSC-LLO保持225和237 mAh g?1的放電容量,相應(yīng)的容量保持率分別為87.6%和97.6%。顯然,濃度梯度可以提高循環(huán)穩(wěn)定性、能量保持率(插圖)和倍率性能(圖3d),以及緩解放電電壓平臺衰減(支持信息)。圖3e顯示GSC-LLO具有更高的DLi+值,這與提高的倍率性能一致。在LLO的電化學(xué)反應(yīng)過程中,Mn的氧化還原動力學(xué)慢于Ni和Co,因此加速了Li+擴散并提高了GSC-LLO的倍率性能,這可能歸因于具有濃度梯度的“單晶”顆粒表面的Mn含量較低。

01571342-a1c6-11ed-bfe3-dac502259ad0.jpg

圖4、a)GSC-LLO在100次循環(huán)后的橫截面SEM圖和(b)放大圖。100次循環(huán)后,在2.0V的放電狀態(tài)下,(c)SC-LLO和(d)GSC-LLO的TEY模式下的Mn L2,3-邊sXAS圖。e) 基于包括層狀和尖晶石狀結(jié)構(gòu)的兩相模型,在100次循環(huán)后對GSC-LLO的XRD Rietveld精修圖。f) GSC-LLO在100次循環(huán)后的HAADF-STEM圖。g、h)分別對應(yīng)(f)中區(qū)域I和II的放大圖和FFT圖。

圖4a、b中的橫截面SEM圖顯示,在100次循環(huán)后,GSC-LLO顆粒幾乎沒有顯示裂紋,這表明“單晶”的特性和機械穩(wěn)定性。圖4c、d分別顯示了100次循環(huán)后放電狀態(tài)為2.0V時的SC-LLO和GSC-LLO的擬合Mn L2,3-邊sXAS曲線。顯然,循環(huán)后SC-LLO中Mn的平均值從+3.5(圖2g)降至+3.3(圖4c),表明其Mn離子的化學(xué)不穩(wěn)定性。相比之下,GSC-LLO的擬合曲線仍以Mn4+離子為主,因此平均價態(tài)保持在+3.6。通常,Mn的價態(tài)降低會導(dǎo)致LLO的電化學(xué)性能下降。一方面,低電壓的Mn3+/Mn4+氧化還原對在LLO反應(yīng)中被激活,并導(dǎo)致快速的放電平臺衰減。

因此,GSC-LLO與SC-LLO相比更能抑制放電平臺衰減。圖4h中的STEM圖顯示了面內(nèi)排列的TM原子,且FFT圖被索引為沿著[011]方向的尖晶石結(jié)構(gòu)。GSC-LLO在循環(huán)過程中形成的尖晶石結(jié)構(gòu)含量低和厚度小不應(yīng)使電容、電壓和Li+擴散顯著降低。相比之下,循環(huán)后的SC-LLO顯示出更高含量的不規(guī)則尖晶石狀結(jié)構(gòu),部分區(qū)域厚度達(dá)到為10nm(支持信息)。因此,與非梯度SC-LLO相比,具有濃度梯度的體結(jié)構(gòu)設(shè)計的GSC-LLO表現(xiàn)出更高的放電容量、電壓保持率和倍率性能。

017b753e-a1c6-11ed-bfe3-dac502259ad0.jpg

圖5、在(a)4.4 V和(b)4.8 V下充電的SC-LLO和GSC-LLO的DSC曲線。插圖是相應(yīng)的電壓曲線。通過原位DEMS測試在首圈循環(huán)充放電過程中(c)SC-LLO和(d)GSC-LLO的O2和CO2釋放曲線。

圖5a、b顯示了充電至4.4V和4.8V的電極的DSC曲線,結(jié)果表明不論是在只有過渡金屬陽離子氧化還原被激活的階段還是涉及到氧的氧化還原被激活。GSC-LLO都表現(xiàn)出較高溫度和較低放熱峰。這說明GSC-LLO中的合理濃度梯度對于優(yōu)化LIBs的熱穩(wěn)定性是有效的。通過原位差分電化學(xué)質(zhì)譜(DEMS)進(jìn)一步研究了兩種“單晶”LLO的氣體釋放行為。如圖5c所示,SC-LLO充電時,在4.3-4.8 V有CO2釋放,這是由電解質(zhì)溶劑和表面碳酸鹽的分解引起的。此外,在≈4.8 V處檢測到O2釋放峰,這源于氧離子在高壓下不可逆氧化導(dǎo)致的。

相比之下,如圖5d所示,GSC-LLO顯示出較少的CO2且沒有O2釋放,特別是在高電壓階段,這表明梯度設(shè)計有利于抑制氣體生成。由于CO2主要由LLO表面活性氧物種對電解質(zhì)溶劑(EC和DEC)的電化學(xué)氧化形成,濃度梯度GSC-LLO中減少的CO2和O2釋放表明表面穩(wěn)定的晶格氧陰離子,這與濃度梯度誘導(dǎo)的穩(wěn)定效應(yīng)相關(guān)。

總結(jié)

這項工作制備了具有濃度梯度體結(jié)構(gòu)設(shè)計的“單晶”富鋰層狀氧化物材料(GSC-LLO)。GSC-LLO顯示出穩(wěn)定的晶格結(jié)構(gòu),并抑制了電化學(xué)循環(huán)過程中錳的還原。因此,與非梯度“單晶”LLO(SC-LLO)相比具有更加優(yōu)異的電化學(xué)性能。此外,GSC-LLO具有更好的熱穩(wěn)定性和可以抑制CO2/O2釋放,這對于實現(xiàn)LIB的高安全性至關(guān)重要?!皢尉А蔽⒚最w粒中元素濃度梯度的操縱為優(yōu)化LLO以實現(xiàn)高能、長壽命和高安全LIBs提供了重要途徑。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • XRD
    XRD
    +關(guān)注

    關(guān)注

    0

    文章

    131

    瀏覽量

    9018
  • GSC
    GSC
    +關(guān)注

    關(guān)注

    0

    文章

    3

    瀏覽量

    6990
  • SSA
    SSA
    +關(guān)注

    關(guān)注

    0

    文章

    8

    瀏覽量

    2936

原文標(biāo)題:北理工尉海軍AFM:新型梯度“單晶”富鋰正極材料

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    單晶正極容量快速失效機制分析!

    隨著電動汽車領(lǐng)域高速發(fā)展,對長續(xù)航動力電池體系的需求也不斷增長。研究發(fā)現(xiàn),鎳層狀氧化物L(fēng)iNixCoyMn1?x?yO2 (NMC,x>0.5)是一種潛在高能量密度電池正極材料
    的頭像 發(fā)表于 05-27 10:49 ?509次閱讀
    <b class='flag-5'>單晶</b><b class='flag-5'>富</b>鎳<b class='flag-5'>正極</b>容量快速失效機制分析!

    正極材料電壓高好還是低好?

    正極材料的電壓高低各有其優(yōu)勢和劣勢,選擇哪種電壓水平的正極材料取決于具體的應(yīng)用需求和電池設(shè)計目標(biāo)。
    的頭像 發(fā)表于 05-19 15:04 ?561次閱讀

    電池正極材料的分類 電池正極材料的特性

    電池的正極材料是決定電池性能的關(guān)鍵因素之一,它們影響著電池的能量密度、循環(huán)壽命、安全性以及成本等多個方面。
    的頭像 發(fā)表于 05-19 14:49 ?923次閱讀

    磷酸鐵正極材料

    磷酸鐵是一種非常重要的鋰電池正極材料。它具有獨特的橄欖石型結(jié)構(gòu),由鐵、磷和氧組成,其中鋰離子在充放電過程中嵌入和脫出。
    的頭像 發(fā)表于 05-19 14:45 ?642次閱讀

    什么是正極材料?正極材料的四大類型?

    正極材料是鋰離子電池中的一個重要組成部分,它位于電池的正極一側(cè),負(fù)責(zé)在充放電過程中儲存和釋放鋰離子。
    的頭像 發(fā)表于 05-19 14:42 ?1713次閱讀

    九墨科技磷酸鐵正極材料前驅(qū)體項目簽約湖南

    近日,九墨科技磷酸鐵正極材料前驅(qū)體項目成功簽約,落戶湖南望城經(jīng)開區(qū),為望城新材料產(chǎn)業(yè)發(fā)展注入新動能。
    的頭像 發(fā)表于 05-19 10:40 ?743次閱讀

    龍蟠科技擬引入2.85億元戰(zhàn)投,加速磷酸鐵正極材料布局

    龍蟠科技近期宣布計劃引入2.85億元的戰(zhàn)略投資,以加速其在磷酸鐵正極材料領(lǐng)域的布局。
    的頭像 發(fā)表于 05-16 11:01 ?407次閱讀

    鐵無序巖鹽鋰離子正極材料的氧化還原研究

    隨著對高性能和高性價比鋰離子電池的需求不斷增長,對由豐富元素(如Fe)組成的正極材料的需求日益迫切。
    的頭像 發(fā)表于 03-27 09:06 ?315次閱讀
    <b class='flag-5'>富</b>鐵無序巖鹽鋰離子<b class='flag-5'>正極</b><b class='flag-5'>材料</b>的氧化還原研究

    正極電壓衰減機理終于講明白了!

    在鋰離子電池正極材料中,具有超高容量的材料正極一直備受關(guān)注,但其循環(huán)過程中快速的電壓衰減導(dǎo)致
    的頭像 發(fā)表于 03-22 09:27 ?985次閱讀
    <b class='flag-5'>富</b><b class='flag-5'>鋰</b>錳<b class='flag-5'>正極</b>電壓衰減機理終于講明白了!

    利用太陽輻射直接修復(fù)正極!

    (Li)和錳(Mn)層狀氧化物材料(LMRO)因其高能量密度而被認(rèn)為是最有前途的下一代電池正極材料
    的頭像 發(fā)表于 03-11 09:12 ?606次閱讀
    利用太陽輻射直接修復(fù)<b class='flag-5'>富</b><b class='flag-5'>鋰</b><b class='flag-5'>富</b>錳<b class='flag-5'>正極</b>!

    亞電池的優(yōu)缺點有哪些

    ,li-SOcl2,開路電壓3.6V,終止電壓2.0V。 亞電池的工作原理是:在充電過程中,鋰離子從正極材料中脫出,通過電解質(zhì)遷移到負(fù)極材料中;在放電過程中,鋰離子從負(fù)極
    的頭像 發(fā)表于 01-16 10:11 ?2462次閱讀

    固態(tài)電池競爭趨向白熱化 半固態(tài)電池量產(chǎn)先行

    固態(tài)電解質(zhì)有更寬的電壓窗口(可達(dá)5V以上),因此能兼容更高比容量的正負(fù)極材料,如超高鎳正極、錳基正極、硅基負(fù)極和
    發(fā)表于 01-12 09:45 ?319次閱讀
    固態(tài)電池競爭趨向白熱化 半固態(tài)電池量產(chǎn)先行

    10萬噸磷酸鐵項目簽約

    聚陰離子型正極材料安全性和循環(huán)壽命與磷酸鐵相當(dāng),兼顧低成本以及長循環(huán)等性能,是業(yè)內(nèi)公認(rèn)的更適合用于儲能場景的鈉電正極材料路線。
    的頭像 發(fā)表于 01-02 16:11 ?455次閱讀

    含硼聚陰離子梯度摻雜實現(xiàn)高電壓正極!

    鎳層狀氧化物(即LiNixCoyMnzO2、x≥0.6,x+y+z=1、NCM),具有成本合理,高電壓(3.8 V vs Li/Li+)和高比容量(>180mAhg?1)等優(yōu)點
    的頭像 發(fā)表于 11-15 15:47 ?1023次閱讀
    含硼聚陰離子<b class='flag-5'>梯度</b>摻雜實現(xiàn)高電壓<b class='flag-5'>富</b>鎳<b class='flag-5'>鋰</b><b class='flag-5'>正極</b>!

    錳電池的正極材料是由什么組成的?錳電池正極材料的優(yōu)點

    錳電池的正極材料是由什么組成的?錳電池正極材料的優(yōu)點?
    的頭像 發(fā)表于 11-10 14:46 ?670次閱讀