0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

通信協(xié)議IIC與SPI之間有何區(qū)別?

jf_78858299 ? 來源:STM32嵌入式開發(fā) ? 作者:STM32嵌入式開發(fā) ? 2023-02-13 10:27 ? 次閱讀

現今,在低端數字通信應用領域,我們隨處可見IIC(Inter-Integrated Circuit)和 SPI(Serial Peripheral Interface)的身影。原因是這兩種通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI)出于不同背景和市場需求制定了這兩種標準通信協(xié)議。

IIC開發(fā)于1982年,當時是為了給電視機內的CPU和外圍芯片提供更簡易的互聯(lián)方式。電視機是最早的嵌入式系統(tǒng)之一,而最初的嵌入系統(tǒng)是使用內存映射(memory-mapped I/O)的方式來互聯(lián)微控制器和外圍設備的。要實現內存映射,設備必須并聯(lián)入微控制器的數據線和地址線,這種方式在連接多個外設時需大量線路和額外地址解碼芯片,很不方便并且成本高。

為了節(jié)省微控制器的引腳和和額外的邏輯芯片,使印刷電路板更簡單,成本更低,位于荷蘭的Philips實驗室開發(fā)了“Inter-Integrated Circuit”,IIC或I2C ,一種只使用二根線接連所有外圍芯片的總線協(xié)議。最初的標準定義總線速度為100kbps。經歷幾次修訂,主要是1995年的400kbps,1998的3.4Mbps。

有跡象表明,SPI總線首次推出是在1979年,Motorola公司將SPI總線集成在他們第一支改自68000微處理器的微控制器芯片上。SPI總線是微控制器四線的外部總線(相對于內部總線)。與IIC不同,SPI沒有明文標準,只是一種事實標準,對通信操作的實現只作一般的抽象描述,芯片廠商與驅動開發(fā)者通過data sheets和application notes溝通實現上的細節(jié)。

SPI總線介紹

對于有經驗的數字電子工程師來說,用SPI互聯(lián)兩支數字設備是相當直觀的。SPI是一種四根信號線協(xié)議,如下圖。

  • SCLK:Serial Clock (output from master)。
  • MOSI;SIMO:Master Output,Slave Input(output from master),
  • MISO;SOMI:Master Input,Slave Output(output from slave)。
  • SS:Slave Select (active low,outputfrom master)。

圖片

SPI是單主設備(single-master)通信協(xié)議,這意味著總線中的只有一支中心設備能發(fā)起通信。當SPI主設備想讀/寫從設備時,它首先拉低從設備對應的SS線(SS是低電平有效),接著開始發(fā)送工作脈沖到時鐘線上,在相應的脈沖時間上,主設備把信號發(fā)到MOSI實現“寫”,同時可對MISO采樣而實現“讀”,如下圖。

圖片

SPI有四種操作模式:模式0、模式1、模式2和模式3.它們的區(qū)別是定義了在時鐘脈沖的哪條邊沿轉換(toggles)輸出信號,哪條邊沿采樣輸入信號,還有時鐘脈沖的穩(wěn)定電平值(即時鐘信號無效時是高還是低)。每種模式由一對參數刻畫,它們稱為時鐘極(clock polarity)CPOL與時鐘期(clock phase)CPHA。

主從設備必須使用相同的工作參數——SCLK\\CPOL和CPHA,才能正常工作。如果有多個從設備,并且它們使用了不同的工作參數,那么主設備必須在讀寫不同從設備間重新配置這些參數。

SPI不規(guī)定最大傳輸速率,沒有地址方案;SPI也沒規(guī)定通信應答機制,沒有規(guī)定流控制規(guī)則。事實上,SPI主設備甚至并不知道指定的從設備是否存在。這些通信控制都得通過SPI協(xié)議以外自行實現。例如,要用SPI連接一支“命令-響應控制型”解碼芯片,則必須在SPI的基礎上實現更高級的通信協(xié)議。

SPI并不關心物理接口電氣特性,例如信號的標準電壓。在最初,大多數SPI應用都是使用間斷性時鐘脈沖和以字節(jié)為單位傳輸數據的,但現在有很多變種實現了連續(xù)性時間脈沖和任意長度的數據幀。

IIC總線介紹

與SPI的單主設備不同,IIC是多主設備的總線,IIC沒有物理的芯片選擇信號線,沒有仲裁邏輯電路,只使用兩條信號線——serial data(SDA)和serial clock(SCL)。

IIC協(xié)議規(guī)定:

  • 每一支IIC設備都有一個唯一的七位設備地址。
  • 數據幀大小為8位的字節(jié)。
  • 數據(幀)中的某些數據位,用于控制通信的開始、停止、方向(讀寫)和應答機制。
    IIC數據傳輸速率有標準模式(100kbps)、快速模式(400kbps)和高速模式(3.4Mbps),另外一些變種實現了低速模式(10kbps)和快速+模式(1Mbps)。
    物理實現上,IIC總線由兩根信號線和一根地線組成。兩根信號線都是雙向傳輸的,參考下圖。IIC協(xié)議標準規(guī)定發(fā)起通信的設備稱為主設備,主設備發(fā)起一次通信后,其它設備均為從設備。

圖片

IIC通信過程大概如下。首先,主設備發(fā)一個START信號,這個信號就像對所有其它設備喊:請大家注意!然后其它設備開始監(jiān)聽總線以準備接收數據。接著,主設備發(fā)送一個7位設備地址加一位的讀寫操作的數據幀。當所設備接收數據后,比對地址自己是否目標設備。如果比對不符,設備進入等待狀態(tài),等待STOP信號的來臨;如果比對相符,設備會發(fā)送一個應答信號——ACKNOWLEDGE作回應。

當主設備收到應答后便開始傳送或接收數據。數據幀大小為8位,尾隨一位的應答信號。主設備發(fā)送數據,從設備應答;相反主設備接數據,主設備應答。當數據傳送完畢,主設備發(fā)送一個STOP信號,向其它設備宣告釋放總線,其它設備回到初始狀態(tài)。

圖片

基于IIC總線的物理結構,總線上的START和STOP信號必定是唯一的。另外,IIC總線標準規(guī)定:SDA線的數據轉換必須在SCL線的低電平期,在SCL線的高電平期,SDA線的上數據是穩(wěn)定的。

圖片

在物理實現上,SCL線和SDA線都是漏極開路(open-drain),通過上拉電阻外加一個電壓源。當把線路接地時,線路為邏輯0,當釋放線路,線路空閑時,線路為邏輯1?;谶@些特性,IIC設備對總線的操作僅有“把線路接地”——輸出邏輯0。

IIC總線設計只使用了兩條線,但相當優(yōu)雅地實現任意數目設備間無縫通信,堪稱完美。我們設想一下,如果有兩支設備同時向SCL線和SDA線發(fā)送信息會出現什么情況。

基于IIC總線的設計,線路上不可能出現電平沖突現象。如果一支設備發(fā)送邏輯0,其它發(fā)送邏輯1,那么線路看到的只有邏輯0。也就是說,如果出現電平沖突,發(fā)送邏輯0的始終是“贏家”。

總線的物理結構亦允許主設備在往總線寫數據的同時讀取數據。這樣,任何設備都可以檢測沖突的發(fā)生。當兩支主設備競爭總線的時候,“贏家”并不知道競爭的發(fā)生,只有“輸家”發(fā)現了沖突——當它寫一個邏輯1,卻讀到0時——而退出競爭。

十位設備地址

任何IIC設備都有一個7位地址,理論上,現實中只能有127種不同的IIC設備。實際上,已有IIC的設備種類遠遠多于這個限制,在一條總線上出現相同的地址的IIC設備的概率相當高。為了突破這個限制,很多設備使用了雙重地址——7位地址加引腳地址(external configuration pins)。IIC標準也預知了這種限制,提出10位的地址方案。

10位的地址方案對IIC協(xié)議的影響有兩點:

第一,地址幀為兩個字節(jié)長,原來的是一個字節(jié)。

第二,第一個字節(jié)前五位最高有效位用作10位地址標識,約定是“11110”。

圖片

除了10位地址標識,標準還預留了一些地址碼用作其它用途,如下表:

圖片

時鐘拉伸

在IIC通信中,主設備決定了時鐘速度。因為時鐘脈沖信號是由主設備顯式發(fā)出的。但是,當從設備沒辦法跟上主設備的速度時,從設備需要一種機制來請求主設備慢一點,這種機制稱為時鐘拉伸。而基于IIC結構的特殊性,這種機制得到實現。當從設備需要降低傳輸的速度的時候,它可以按下時鐘線,逼迫主設備進入等待狀態(tài),直到從設備釋放時鐘線,通信才繼續(xù)。

高速模式

原理上講,使用上拉電阻來設置邏輯1,會限制總線的最大傳輸速度。而速度是限制總線應用的因素之一。這也說明為什么要引入高速模式(3.4Mbps)。在發(fā)起一次高速模式傳輸前,主設備必須先在低速的模式下(例如快速模式)發(fā)出特定的“High Speed Master”信號。為縮短信號的周期和提高總線速度,高速模式必須使用額外的I/O緩沖區(qū)。另外,總線仲裁在高速模式下可屏蔽掉。更多的信息請參與總線標準文檔。

IIC與SPI對比

我們來對比一下IIC和SPI的一些關鍵點。

1、總線拓撲結構\\信號路由\\硬件資源耗費

IIC只需兩根信號線,而標準SPI至少四根信號,如果有多個從設備,信號需要更多。一些SPI變種雖然只使用三根線——SCLK、SS和雙向的MISO/MOSI,但SS線還是要和從設備一對一根。另外,如果SPI要實現多主設備結構,總線系統(tǒng)需額外的邏輯和線路。用IIC構建系統(tǒng)總線唯一的問題是有限的7位地址空間,但這個問題新標準已經解決——使用10位地址。從第一點上看,IIC是明顯的大贏家。

2、數據吞吐\\傳輸速度

如果應用中必須使用高速數據傳輸,那么SPI是必然的選擇。因為SPI是全雙工,IIC的不是。SPI沒有定義速度限制,一般的實現通常能達到甚至超過10Mbps。IIC最高的速度也就快速+模式(1Mbps)和高速模式(3.4Mbps),后面的模式還需要額外的I/O緩沖區(qū),還并不是總是容易實現的。

3、優(yōu)雅性

IIC常被稱更優(yōu)雅于SPI。公正的說,筆者更傾向于認為兩者同等優(yōu)雅和健壯。IIC的優(yōu)雅在于它的特色——用很輕盈的架構實現了多主設備仲裁和設備路由。但是對使用的工程師來講,理解總線結構更費勁,而且總線的性能不高。

SPI的優(yōu)點在于它的結構相當的直觀簡單,容易實現,并且有很好擴展性。SPI的簡單性不足稱其優(yōu)雅,因為要用SPI搭建一個有用的通信平臺,還需要在SPI之上構建特定的通信協(xié)議軟件。也就是說要想獲得SPI特有而IIC沒有的特性——高速性能,工程師們需要付出更多的勞動。

另外,這種自定的工作是完全自由的,這也說明為什么SPI沒有官方標準。IIC和SPI都對低速設備通信提供了很好的支持,不過,SPI適合數據流應用,而IIC更適合“字節(jié)設備”的多主設備應用。

總結

在數字通信協(xié)議簇中,IIC和SPI常稱為“小”協(xié)議,相對Ethernet、USBSATA、PCI-Express等傳輸速度達數百上千兆字節(jié)每秒的總線。但是,我們不能忘記的是各種總線的用途是什么?!按蟆眳f(xié)議是用于系統(tǒng)外的整個系統(tǒng)之間通信的,“小”協(xié)議是用于系統(tǒng)內各芯片間的通信,沒有跡象表明“大”協(xié)議有必要取代“小”協(xié)議。IIC和SPI的存在和流行體現了“夠用就好”的哲學。回應文首,IIC和SPI如此流行,它是任何一位嵌入式工程師必備的工具。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 通信協(xié)議

    關注

    28

    文章

    840

    瀏覽量

    40215
  • SPI
    SPI
    +關注

    關注

    17

    文章

    1688

    瀏覽量

    91202
  • IIC
    IIC
    +關注

    關注

    11

    文章

    298

    瀏覽量

    38241
收藏 人收藏

    評論

    相關推薦

    數字通信協(xié)議中,什么是I2C和SPI總線協(xié)議?

    通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市場需求制定了這兩種標準
    的頭像 發(fā)表于 11-12 09:28 ?1.2w次閱讀
    數字<b class='flag-5'>通信協(xié)議</b>中,什么是I2C和<b class='flag-5'>SPI</b>總線<b class='flag-5'>協(xié)議</b>?

    介紹一下I2C和SPI兩種常見的通信協(xié)議之間區(qū)別

    在與ECU或者嵌入式相關的工作中, 我們肯定會接觸到各種通信協(xié)議, 很多協(xié)議很多類似的地方, 也容易混淆. 本文來介紹一下兩種常見的通信協(xié)議之間
    的頭像 發(fā)表于 11-30 16:50 ?3181次閱讀
    介紹一下I2C和<b class='flag-5'>SPI</b>兩種常見的<b class='flag-5'>通信協(xié)議</b><b class='flag-5'>之間</b><b class='flag-5'>區(qū)別</b>

    什么是IICSPI總線協(xié)議?

    通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市場需求制定了這兩種標準
    發(fā)表于 10-21 07:25

    spi,uart,iic協(xié)議之間的對比

    spi,uart,iic協(xié)議之間的對比:spi和uart的區(qū)別,
    發(fā)表于 08-19 08:41

    IIC通信協(xié)議概述

    **一、IIC通信協(xié)議**(1)概述I2C(Inter-Integrated Circuit BUS) 集成電路總線,該總線由 NXP(原 PHILIPS)公司設計,多用于主控制器和從器件間的主從
    發(fā)表于 11-22 07:51

    IIC通信協(xié)議的相關資料推薦

    IIC通信協(xié)議詳解IIC的概述IIC分為軟件IIC和硬件IICIIC通信協(xié)議空閑狀態(tài)開始信號與停
    發(fā)表于 01-20 07:06

    SPI是什么?SPI通信協(xié)議說明

    文章目錄目錄前言一、SPI是什么?二、SPI通信協(xié)議1.通信引腳說明2.通信格式說明3.實現形式4.三線制
    發(fā)表于 02-17 06:45

    SPI通信協(xié)議講解相關資料推薦

    了I2C通信協(xié)議大概,弄懂了I2C通信那么相信你也可以輕松弄懂的,因為I2C和SPI之間一些共同點。I2C
    發(fā)表于 02-17 06:09

    STM32如何模擬SPI通信協(xié)議

    STM32模擬SPI通信協(xié)議SPI的簡介:SPI是串行外設接口的縮寫,是一種高速的,全雙工、同步的串行通信總線;
    發(fā)表于 02-17 08:03

    SPI通信協(xié)議及實例打包

    本文是SPI通信協(xié)議及實例打包分享。
    發(fā)表于 11-16 13:24 ?47次下載

    IICSPI總線協(xié)議區(qū)別

    通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市場需求制定了這兩種標準
    的頭像 發(fā)表于 04-24 12:41 ?6377次閱讀
    <b class='flag-5'>IIC</b>和<b class='flag-5'>SPI</b>總線<b class='flag-5'>協(xié)議</b>的<b class='flag-5'>區(qū)別</b>

    SPI通信協(xié)議講解

    了I2C通信協(xié)議大概,弄懂了I2C通信那么相信你也可以輕松弄懂的,因為I2C和SPI之間一些共同點。I2C
    發(fā)表于 12-22 19:19 ?26次下載
    <b class='flag-5'>SPI</b><b class='flag-5'>通信協(xié)議</b>講解

    通信協(xié)議SPI

    STM32模擬SPI通信協(xié)議SPI的簡介:SPI是串行外設接口的縮寫,是一種高速的,全雙工、同步的串行通信總線;
    發(fā)表于 12-22 19:20 ?22次下載
    <b class='flag-5'>通信協(xié)議</b>:<b class='flag-5'>SPI</b>

    通信協(xié)議IICSPI最全對比

    現今,在低端數字通信應用領域,我們隨處可見IIC(Inter-Integrated Circuit)和 SPI(Serial Peripheral Interface)的身影。原因是這兩種通信
    的頭像 發(fā)表于 01-30 14:56 ?2451次閱讀

    詳解物聯(lián)網常用協(xié)議IIC和RS485通信協(xié)議

    科技常用的兩種通信協(xié)議——IIC和RS485。IIC通信協(xié)議是一種半雙工通信協(xié)議,雙總線串行,主要用在主機和從機對于數據量較少且傳輸距離較短
    的頭像 發(fā)表于 03-02 17:12 ?1393次閱讀
    詳解物聯(lián)網常用<b class='flag-5'>協(xié)議</b>:<b class='flag-5'>IIC</b>和RS485<b class='flag-5'>通信協(xié)議</b>