0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

提高Li|LAGP界面相容性:固體電解質(zhì)界面的作用

清新電源 ? 來源:清新電源 ? 2023-03-06 15:56 ? 次閱讀

研究背景

NASCION型鋰(Li)導(dǎo)體為打破固態(tài)鋰電池(SSLB)的挑戰(zhàn)提供了絕佳的機會,呈現(xiàn)卓越的安全性和高能量密度。然而,由于界面相容性差,它們的實際應(yīng)用受到了阻礙。本文通過滴落痕量氟乙腈基全氟電解質(zhì),原位構(gòu)建鋰金屬與LAGP(Li1.5Al0.5Ge1.5Ge4.3(PO1)5)間的富LiF固體電解質(zhì)界面(SEI)層,成功阻斷界面副反應(yīng)。

研究注意到形成的高楊氏模量但快速動力學的富含LiF的SEI層成功地抑制了Li枝晶的生長,進一步展現(xiàn)優(yōu)越的界面化學性質(zhì)。因此,這種強大的SEI將LAGP的臨界電流密度提升至>2.250 mA cm?1的歷史新高值。此外,與商用級正極組裝的混合全電池具有突出的循環(huán)壽命(>250次循環(huán))和出色的速率性能。目前的SEI工程策略使SSLB的工業(yè)化部署實現(xiàn)了巨大的飛躍。研究結(jié)果表明,滴落痕量不易燃氟乙腈基全氟化電解質(zhì)可有效解決LAGP與鋰之間的界面問題。

成功簡介

近日,湖南大學劉琦和清華深研院李寶華教授團隊通過滴微量氟乙腈基全氟化電解液,在Li金屬和LAGP(Li1.5Al0.5Ge1.5(PO4)3)間原位構(gòu)建富Li-F的固體電解質(zhì)間相(SEI)層,成功地阻斷了界面副反應(yīng)。研究發(fā)現(xiàn)具備高楊氏模量但快速動力學的富LiF的SEI層成功地抑制了Li枝晶的生長,展現(xiàn)了優(yōu)越的界面化學性質(zhì)。

因此,這種強大的SEI不僅將LAGP的臨界電流密度提高到>1.5 mA cm-2,而且與商業(yè)化正極組裝的混合全電池提供了顯著的循環(huán)壽命(>250圈)和優(yōu)異的速率性能。

研究亮點

(1) 原位構(gòu)建了富LiF的SEI層,有效地阻斷了Li金屬與LAGP之間的副反應(yīng)。

(2) 研究者顯著提高了LAGP的CCD,從0.6 mA cm-2到高值>1.5 mA cm-2,顯著延長了使用壽命和長期耐用性(>250次循環(huán))以及異常優(yōu)越的速率性能

(3) 具有高楊氏模量但快速嵌入/脫出動力學的堅硬SEI促進了無枝晶的均勻沉積,從而高度提高了界面相容性。

圖文導(dǎo)讀

固態(tài)鋰電池(SSLBs)具備較高的的安全性和潛在的優(yōu)良能量密度,是未來電化學的有效替代品。通過與鋰金屬負極的耦合,SSLBs可能實現(xiàn)500 Wh kg-1的高能量密度,具有最高的理論容量(3860 mAh g-1)和最低的氧化還原電位(-3.040 V vs. H+/H)。

此外,無機固體電解質(zhì)可以在在物理上抑制鋰枝晶的生長,消除不可逆的電解質(zhì)消耗。特別是NASICON型離子導(dǎo)電玻璃陶瓷,如Li1+xAlxGe2-x(PO4)3(LAGP),由于其優(yōu)越的離子電導(dǎo)率、易于燒結(jié)工藝和在正常氣氛中的高穩(wěn)定性,具有作為近期固體電解質(zhì)的競爭前景。

盡管如此,在SSLBs中利用LAGP電解質(zhì)仍然存在實際困難,最關(guān)鍵的挑戰(zhàn)之一是,當與鋰金屬耦合時,它容易受到不穩(wěn)定界面的影響。具體來說,LAGP對Li金屬的副反應(yīng)導(dǎo)致了Li|LAGP界面上的一系列界面不相容,如圖1A所示。因此,有毒反應(yīng)產(chǎn)物的衍生間相作為多孔固體電解質(zhì)間相(SEI)層的作用,能促進電子傳導(dǎo),但減弱離子電導(dǎo)。這種“SEI”的持續(xù)增長導(dǎo)致了較差的物理接觸,不均勻的Li+/e-通量,以及在循環(huán)時不斷增加的界面電阻,并伴隨著界面處的高局部電流密度。

因此,鋰枝晶在熱點的三角生長和體積的變化進一步惡化了界面化學,甚至使接觸點產(chǎn)生局部壓力,并與鋰金屬填充傳播,進一步導(dǎo)致體電解質(zhì)斷裂,力學性能較弱。因此,界面上“SEI”層的性質(zhì)在鋰枝晶的形成和副反應(yīng)觸發(fā)中起著關(guān)鍵作用。

如圖1B所示,由于在接下來的Li充放電過程中,F(xiàn)AN和LiFSI與鋰金屬的協(xié)同反應(yīng),將整合構(gòu)建富LiF的SEI,其低電導(dǎo)率(10-10 S cm-1)、低Li+擴散勢壘和高界面能,具有抑制副反應(yīng)和鈍化電子傳遞途徑引起的鋰枝晶生成的良好能力。同時,這種高質(zhì)量的SEI的存在確保了均勻的Li通量具有優(yōu)越的電子阻塞特性,同時阻礙了Li成核的電子誘導(dǎo)和固體電解質(zhì)內(nèi)局部應(yīng)力的積累。因此,成功促進界面化學將有利于穩(wěn)定保持鋰金屬和LAGP電解質(zhì)之間的界面。

138d8408-bbe6-11ed-bfe3-dac502259ad0.png

圖1. NASICON型固態(tài)電解質(zhì)與金屬鋰負極的界面示意圖。(a) 鋰金屬與LAGP在多孔SEI的常規(guī)界面上連續(xù)的副反應(yīng)和鋰枝晶形成,(b) 界面設(shè)計與原位形成富Li-F但電子阻塞的間相耦合。

圖2A-F顯示了LFF電解質(zhì)的固有性質(zhì),包括結(jié)構(gòu)、最高占據(jù)分子軌道(HUMO)和最低未占據(jù)分子軌道(LUMO)能量杠桿及其電化學性質(zhì)。當一個氟原子取代了乙腈(AN)末端碳上的一個氫原子時,得到的FAN具有更強的物理/電化學性質(zhì)(圖2A)。

為了探討還原/氧化的可行性,研究者計算了選定溶劑:AN、FAN、碳酸氟乙烯(FEC)的LUMO和HOMO。在所選溶劑中,F(xiàn)AN具有-0.9 eV的最低LUMO杠桿和-9.70 eV的HUMO,表明Li金屬表面具有富F的熒光衍生的成膜能力,電解質(zhì)對陰極的抗氧化性較好(圖2B)。即使在純FAN溶液中,1 M LiTFSI也可以觀察到這種趨勢,提供了增強的電化學窗口(>5 V),如圖2C所示。

與之形成鮮明對比的是,AN基電解質(zhì)的應(yīng)用在典型濃度下存在狹窄窗口(<4 V)。隨著AN中鹽的比值的增加,氧化穩(wěn)定性略有改善,而在4.5 V時負極電流突然增加。對于所選的LFF電解質(zhì),溶劑化化學通過拉曼光譜進行了化學驗證(圖2D)。

在FEC:FAN的混合物中(體積為1:1),在~730,~867和~905 cm-1附近的臨界峰(分配給自由FEC),而在~566和~913cm-1附近的臨界峰對應(yīng)于自由FAN分子。由于氟化降低了Li+的溶劑化能力,定制的溶劑化化學通過改進的去溶劑化過程促進增強的陰離子衍生的SEI層的快速形成,有效地緩解了自由溶劑分子和Li金屬之間的過度副反應(yīng)。

與LF(~0.27)和CE(~0.21)相比,優(yōu)化的溶劑化化學使LFF(~0.32)的傳輸數(shù)LI+增強,從而促進了Li+的高效傳輸(圖2E和S2)。隨著FAN的引入,LFF電解質(zhì)具有不易燃性,這是由于FAN通過捕獲自由氧和氫自由基而被氟化。對稱Li|LAGP|Li細胞的電化學阻抗譜(EIS)測試進一步證明了改進的界面化學,如圖2G和S5所示。

145fc896-bbe6-11ed-bfe3-dac502259ad0.png

圖2. FAN基-全氟電解質(zhì)的固有性質(zhì)和界面穩(wěn)定性。(a) FAN結(jié)構(gòu)的(A)FAN及AN結(jié)構(gòu)對比,(b) 不同成分的LUMO和HOMO能量杠桿。(c) 不同電解質(zhì)在1 mV s-1的掃描速率下LSV曲線,(d)FEC、FAN、FAN:FEC(1:1)、1MLiFSI-FEC(LF)和1 M LiFSI-FAN:FEC(1:1,LFF)電解質(zhì)的拉曼光譜,(e) 在10 mV的極化電壓下,含LFF電解質(zhì)的對稱Li||Li電池的時間-電流曲線,(f) LFF電解質(zhì)的易燃性試驗,(g)LFF電解質(zhì)在LAGP顆粒上的接觸角,(h) 用不同液體電解質(zhì)修飾的對稱Li|LAGP|Li電池經(jīng)過20次循環(huán)后的EIS。

計算出LFF、LF和CE電解質(zhì)的Li+通過SEI膜擴散的Esei值分別為~20.65,~37.01和~35.44 KJ mol-1(圖3A和S6)。不對稱Li||Cu細胞中Li沉積初始階段的成核過電位如圖3B所示。LFF、LF和CE電解質(zhì)的對應(yīng)值分別為~14.8,~44.8和~16.0 mV,進一步證明LFF促進了均勻的Li沉積,且勢壘最低。堅固的富LiF的SEI層在阻斷電子轉(zhuǎn)移和甚至在最終條件下保持其界面穩(wěn)定方面的重要意義,從而阻止了樹突粒子的副反應(yīng)和樹突粒子的生長。通過對循環(huán)鋰金屬陽極界面化學的詳細討論,可以充分說明這一推斷。

1576a592-bbe6-11ed-bfe3-dac502259ad0.png

圖3. 鋰與設(shè)計的電解質(zhì)的界面相容性。(a) 不同電解質(zhì)的對稱Li||Li電池中的能奎斯特圖得到的Rsei的活化能,(b) 不同電解質(zhì)的Li||Cu電池鍍鋰時的過電位差,(c) ,使用Li||Li電池與不同電解質(zhì)的Li嵌入/脫出的Tafel圖,(d) LFF電解質(zhì)和(f) CE電解質(zhì)修飾的Li |LAGP |Li對稱電池的電壓分布,(e) Li|LFF|LAGP|LFF|Li和(g) Li|CE|LAGP|CE|Li對稱細胞的CCD結(jié)果。

采用場發(fā)射掃描電子顯微鏡(FE-SEM)、原子力顯微鏡(AFM)和高分辨率X射線光電子能譜(XPS)進行界面化學性質(zhì)。XPS首先分析了10次循環(huán)后鋰金屬上的SEI組成。所有表征表明,微量LFF基全氟電解質(zhì)的引入?yún)f(xié)同促進了電子絕緣但快速動態(tài)富LiF的SEI層的形成,顯著阻斷了Li和LAGP之間可能的副反應(yīng)

16347446-bbe6-11ed-bfe3-dac502259ad0.png

圖4. 鋰金屬的界面化學特征。用少量LFF和CE電解質(zhì)修飾10次循環(huán)后,在0.1 mA cm-2/0.1 mAh cm-2.的Li|LAGP|鋰金屬陽極上的F1s (A)和Li1s (B)的高分辨率XPS光譜,(C) Li|LFF|LAGP|LFF|Li和(D) Li|CE|LAGP|CE|Li細胞的SEI層的3D-AFM形態(tài)學圖像,(E)循環(huán)鋰金屬上SEI層的原子濃度。從(F) Li|LFF|LAGP|LFF|Li和(G) Li|CE|LAGP|CE|Li細胞經(jīng)過20次循環(huán)后循環(huán)的Li金屬的頂部FE-SEM圖像。

結(jié)果表明,在4.3 V的截止電壓下,混合固體電解質(zhì)可以在0.1 C下可提供156 mAh g-1的初始放電容量(圖5A)。在0.2 C(1C=178 mAh g-1)的250次循環(huán)中,可以獲得99.5%的高庫侖效率的高容量保留(79.39%)??赡娴某浞烹娗€進一步驗證了典型的電壓平臺,即使在100個循環(huán)后也具有穩(wěn)定的電壓極化(圖5B),這歸功于構(gòu)建了強大的LAGP|電極界面。

具體來說,混合Li|LAGP|LiFePO4全電池在0.1、0.2、0.4、0.6、1.0、1.0、1.5、2.0、4.0 C的可逆放電容量(基于正極質(zhì)量,1C=為170 mAh g-1,圖5C和S18)。特別是,在相應(yīng)的充放電曲線中,穩(wěn)定的電壓極化顯示了穩(wěn)健的界面穩(wěn)定性和增強的Li+擴散動力學。

16629fec-bbe6-11ed-bfe3-dac502259ad0.png

圖5. 基于商業(yè)正極的混合LAGP基固態(tài)全電池的電化學性能。(A)在Li|LFF|LAGP|LDS(0.2 M LiDFOB)|LiCoO2細胞在0.2 C下不同循環(huán)后的典型充放電電壓曲線。Li|LFF|LAGP| LDS|LiFePO4細胞的(C)速率性能,(D)LDS電解質(zhì)的易燃性試驗。

總結(jié)與展望

研究者提出了一種簡單的界面優(yōu)化策略,使混合固液界面更加堅固,原位構(gòu)建了富LiF的SEI層,有效地阻斷了Li金屬與LAGP之間的副反應(yīng)。因此,研究者顯著提高了LAGP的CCD,從0.6 mA cm-2到高值>1.5 mA cm-2,顯著延長了使用壽命和長期耐用性(>250周期)以及異常優(yōu)越的速率性能。利用XPS、AFM和FE-SEM對界面化學的深入研究表明,富LiF的SEI層在LAGP基電池中起關(guān)鍵作用。具體來說,這種具有高楊氏模量但快速嵌入/脫出動力學的堅硬SEI促進了無枝晶的均勻沉積,從而高度提高了界面相容性。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • CCD
    CCD
    +關(guān)注

    關(guān)注

    32

    文章

    870

    瀏覽量

    141863
  • EIS
    EIS
    +關(guān)注

    關(guān)注

    0

    文章

    26

    瀏覽量

    8786
  • 固體電解質(zhì)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    8353
  • 固態(tài)鋰電池
    +關(guān)注

    關(guān)注

    0

    文章

    44

    瀏覽量

    4322

原文標題:湖南大學劉琦團隊EcoMat:提高Li|LAGP界面相容性:固體電解質(zhì)界面的作用

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人機交互界面是什么_人機交互界面的功能

    終端(OT),是指人與計算機系統(tǒng)之間的通信媒體或手段,是人與計算機之間進行各種符號和動作的雙向信息交換的平臺。   人機交互界面的主要作用是將人類的意圖轉(zhuǎn)化為計算機能夠理解和處理的形式,同時將計
    的頭像 發(fā)表于 06-22 11:03 ?1233次閱讀

    一種彈性和粘附SEI,將其集成到共軛表面雙層結(jié)構(gòu)中

    固體電解質(zhì)界面層(SEIs)被用來保護大容量陽極,因為陽極會受到嚴重的體積變化和快速降解的影響。
    的頭像 發(fā)表于 05-27 09:16 ?281次閱讀
    一種彈性和粘附<b class='flag-5'>性</b>SEI,將其集成到共軛表面雙層結(jié)構(gòu)中

    具有密集交聯(lián)結(jié)構(gòu)的明膠基水凝膠電解質(zhì)(ODGelMA)

    目前,開發(fā)一種能夠成功實現(xiàn)兼具機械強度、離子電導(dǎo)率和界面適應(yīng)的綜合水凝膠電解質(zhì)基質(zhì)仍然具有挑戰(zhàn)。
    的頭像 發(fā)表于 05-22 09:17 ?377次閱讀
    具有密集交聯(lián)結(jié)構(gòu)的明膠基水凝膠<b class='flag-5'>電解質(zhì)</b>(ODGelMA)

    鈮酸鋰調(diào)控固態(tài)電解質(zhì)電場結(jié)構(gòu)促進鋰離子高效傳輸!

    聚合物基固態(tài)電解質(zhì)得益于其易加工,最有希望應(yīng)用于下一代固態(tài)鋰金屬電池。
    的頭像 發(fā)表于 05-09 10:37 ?374次閱讀
    鈮酸鋰調(diào)控固態(tài)<b class='flag-5'>電解質(zhì)</b>電場結(jié)構(gòu)促進鋰離子高效傳輸!

    電解質(zhì)電極信號采集控制板

    1、產(chǎn)品介紹: 本產(chǎn)品是測量分析人體的血清或者尿液中K,NA CL CA PH LI CL CO2 等離子的濃度含量。 2、應(yīng)用場景: 電解質(zhì)分析儀。 3、產(chǎn)品概述: 主控芯片
    的頭像 發(fā)表于 04-11 09:07 ?304次閱讀
    <b class='flag-5'>電解質(zhì)</b>電極信號采集控制板

    請問聚合物電解質(zhì)是如何進行離子傳導(dǎo)的呢?

    在目前的聚合物電解質(zhì)體系中,高分子聚合物在室溫下都有明顯的結(jié)晶,這也是室溫下固態(tài)聚合物電解質(zhì)的電導(dǎo)率遠遠低于液態(tài)電解質(zhì)的原因。
    的頭像 發(fā)表于 03-15 14:11 ?691次閱讀
    請問聚合物<b class='flag-5'>電解質(zhì)</b>是如何進行離子傳導(dǎo)的呢?

    不同類型的電池的電解質(zhì)都是什么?

    電解質(zhì)通過促進離子在充電時從陰極到陽極的移動以及在放電時反向的移動,充當使電池導(dǎo)電的催化劑。離子是失去或獲得電子的帶電原子,電池的電解質(zhì)由液體,膠凝和干燥形式的可溶性鹽,酸或其他堿組成。電解質(zhì)也來自
    的頭像 發(fā)表于 02-27 17:42 ?1031次閱讀

    新型固體電解質(zhì)材料可提高電池安全和能量容量

    利物浦大學的研究人員公布了一種新型固體電解質(zhì)材料,這種材料能夠以與液體電解質(zhì)相同的速度傳導(dǎo)鋰離子,這是一項可能重塑電池技術(shù)格局的重大突破。
    的頭像 發(fā)表于 02-19 16:16 ?712次閱讀

    弱溶劑化少層碳界面實現(xiàn)硬碳負極的高首效和穩(wěn)定循環(huán)

    鈉離子電池碳基負極面臨著首次庫倫效率低和循環(huán)穩(wěn)定性差的問題,目前主流的解決方案是通過調(diào)節(jié)電解液的溶劑化結(jié)構(gòu),來調(diào)節(jié)固體電解質(zhì)界面(SEI),卻忽略了負極-
    的頭像 發(fā)表于 01-26 09:21 ?973次閱讀
    弱溶劑化少層碳<b class='flag-5'>界面</b>實現(xiàn)硬碳負極的高首效和穩(wěn)定循環(huán)

    關(guān)于固態(tài)電解質(zhì)的基礎(chǔ)知識

    固態(tài)電解質(zhì)在室溫條件下要求具有良好的離子電導(dǎo)率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
    的頭像 發(fā)表于 01-19 14:58 ?1.5w次閱讀
    關(guān)于固態(tài)<b class='flag-5'>電解質(zhì)</b>的基礎(chǔ)知識

    人工界面修飾助力高性能鋰金屬電池的最新研究進展與展望!

    鋰金屬負極的能量密度很高,當與高電壓正極結(jié)合時,鋰金屬電池可以實現(xiàn)接近 500 Wh kg?1 的能量密度。然而,鋰金屬負極并不穩(wěn)定,會與電解質(zhì)反應(yīng)生成固體電解質(zhì)界面 (SEI)。
    的頭像 發(fā)表于 01-02 09:08 ?832次閱讀
    人工<b class='flag-5'>界面</b>修飾助力高性能鋰金屬電池的最新研究進展與展望!

    離子-偶極作用誘導(dǎo)實現(xiàn)PVDF電解質(zhì)游離殘留溶劑封裝

    由于高離子導(dǎo)電和機械強度,聚(氟乙烯)(PVDF)電解質(zhì)越來越受到固態(tài)鋰電池的關(guān)注,但高活性殘留溶劑嚴重困擾著循環(huán)穩(wěn)定性。
    的頭像 發(fā)表于 11-21 10:09 ?1461次閱讀
    離子-偶極<b class='flag-5'>作用</b>誘導(dǎo)實現(xiàn)PVDF<b class='flag-5'>電解質(zhì)</b>游離殘留溶劑封裝

    鋰離子電池電解液的概念、組成及作用

    從兒童玩具到無繩電動工具,再到電動汽車,由鋰離子電池供電的產(chǎn)品,包括 三元鋰電池 ,在我們的日常生活中正變得越來越普遍。電池的電解液被認為是最重要的組成部分之一。根據(jù)電解液的狀態(tài), 鋰離子電池電解液 可分為液體
    的頭像 發(fā)表于 11-10 10:00 ?3635次閱讀

    利用三甲基硅化合物改善硫酸鹽固態(tài)電解質(zhì)與陰極材料的界面穩(wěn)定性

    這篇研究文章的背景是關(guān)于固態(tài)鋰電池(ASSBs)中硫化物基固態(tài)電解質(zhì)界面穩(wěn)定性問題。
    的頭像 發(fā)表于 11-01 10:41 ?977次閱讀
    利用三甲基硅化合物改善硫酸鹽固態(tài)<b class='flag-5'>電解質(zhì)</b>與陰極材料的<b class='flag-5'>界面</b>穩(wěn)定性

    鋰金屬電池正負離子協(xié)同調(diào)節(jié)功能的兩離子聚合物電解質(zhì)的原位構(gòu)建

    聚合物的兩離子段通常是剛性的,導(dǎo)致所有聚合物兩離子電解質(zhì)通常太硬而無法與電極充分接觸,這可能導(dǎo)致高界面電阻和設(shè)備的短壽命。
    發(fā)表于 10-17 15:48 ?668次閱讀
    鋰金屬電池正負離子協(xié)同調(diào)節(jié)功能的兩<b class='flag-5'>性</b>離子聚合物<b class='flag-5'>電解質(zhì)</b>的原位構(gòu)建