0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AMC7932單芯片解決方案實現(xiàn)GaN功放的檢測與控制

星星科技指導(dǎo)員 ? 來源:TI ? 作者:Liu Seasat; Yu, Yunta ? 2023-03-27 09:48 ? 次閱讀

我國于2019年進(jìn)入5G部署預(yù)商用階段,國務(wù)院要求力爭在2020年啟動5G的全面商用。5G時代,移動通信基礎(chǔ)設(shè)施將迎來全面的更新,5G基站建設(shè)迫在眉睫。由于5G普遍采用Massive MIMO架構(gòu),基站內(nèi)的天線通道數(shù)量急劇提升。4G時代,天線形態(tài)基本是4T4R或者8T8R,按照三個扇區(qū),對應(yīng)的射頻PA需求量為12個或者24個;5G基站以64T64R大規(guī)模天線陣列為主,對應(yīng)的PA需求量高達(dá)192個,PA數(shù)量將大幅增長。 5G 傳輸?shù)膶拵д{(diào)制需要PA提供更高增益,更高效率和更嚴(yán)格線性度,而且5G的工作頻點為2.5GHz和3.5GHz,未來會擴(kuò)展到4.9GHz,甚至28GHz,所以5G系統(tǒng)中的關(guān)鍵技術(shù)部分——射頻功率器件也迎來了重大變化。目前基站功率放大器主要為LDMOS技術(shù)和GaAs技術(shù)。GaN PA由于具有帶寬更寬、高功率附加效率、功率密度更大、體積更小,能較好的適用于大規(guī)模MIMO,因此5G 基站GaN射頻PA將成為主流技術(shù),逐漸占領(lǐng)LDMOS和GaAs的市場,成為RF功率應(yīng)用的主流技術(shù)。

pYYBAGQg9dWAchKuAABUkrznNaw090.png

圖1:簡化的PA原理圖

為更好地了解柵極電壓和靜態(tài)電流如何影響功放交流AC性能,可以用金屬氧化物半導(dǎo)體場效應(yīng)晶體管MOSFET)模型來代替功放,得到下面公式:

poYBAGQg9daARYItAAAP1GTIdWY616.JPG

可以看到晶體管的源漏電流Ids是柵源電壓Vgs的函數(shù),其中包含兩項與溫度相關(guān)參數(shù):載流有效電子遷移率μ和閾值電壓Vth。高的Vgs電壓會導(dǎo)致高的Ids或高的功率放大器。Ids還取決于漏極電壓,但是一般情況下會固定Vd的電壓。工程師會使用優(yōu)化后的Vd電壓以獲得所需的功率水平。 Vd值對于GaN FET,通常約為50 V;對于LDMOS FET,通常約為28V。

下圖是方程的圖形表述形式。驅(qū)動一個小的RF輸入信號,使其疊加到DC柵極電壓上,從而產(chǎn)生AC漏極電流 。該AC電流圍繞靜態(tài)電流值 振蕩。可利用MOSFET晶體管I-V曲線和負(fù)載線分析來找到相應(yīng)的AC漏極電壓 。

pYYBAGQg9deAOjZnAACeu70SZ9M957.png

圖2:MOSFET Vgate與Ids曲線圖

為了確定PA的最優(yōu)偏置狀態(tài),必須在功放的線性度、效率和增益等參數(shù)之間進(jìn)行平衡。通過對漏極偏流的控制,使其隨溫度和時間的變化而保持恒定的值,可改善功放的總性能,同時又可確保功放工作在調(diào)整的輸出功率范圍之內(nèi)。目前常用的方法是動態(tài)控制功放的柵極電壓,首先量化PA的漏極電流和工作溫度,通過計算生成偏置電壓的數(shù)字控制量,通過DAC電阻設(shè)定所需的偏置,使功放工作在所需的最佳偏置狀態(tài),以實現(xiàn)最優(yōu)的性能,而無論電壓、溫度和其他環(huán)境參數(shù)如何變化。

溫度檢測

Ids還取決于FET的溫度變化。閾值電壓Vth和有效電子遷移率μ會隨著溫度的上升而降低,因此,溫度的變化會引起輸出功率的變化。溫度變化造成的Ids變化需要通過調(diào)整系統(tǒng)中其他兩個變量之一來補(bǔ)償:Vd或Vgs。 調(diào)整Vgs更容易,因為只需要很小的電壓變化即可。所以一般使用一個或多個溫度傳感器來測量功放的溫度。

電流檢測

功放晶體管的漏極電壓容易受到高壓電源線上變化的影響。當(dāng)高壓電源線上出現(xiàn)電壓尖峰,或超范圍的大電流的時候,如果控制環(huán)路的速度不夠快,就無法保護(hù)器件不受損壞。一般控制環(huán)路由以下部分組成:電流傳感器、模數(shù)轉(zhuǎn)換器,以及用來處理數(shù)字量的外部控制邏輯。如果環(huán)路確定出電源線上的電流過大,它就向模數(shù)轉(zhuǎn)換器發(fā)出命令,降低柵極電壓或關(guān)斷此部分。因此一般都會使用一個電流檢測放大器來精確測定高壓電源線上的電流。

電壓檢測

Ids變化需要通過調(diào)整系統(tǒng)中Vd或Vgs來補(bǔ)償。 調(diào)整Vgs更容易,因為只需要很小的電壓變化即可。為了精確的確保Vgs和Vd穩(wěn)定準(zhǔn)確,我們往往需要對Vgs和Vd的電壓進(jìn)行監(jiān)控。PA系統(tǒng)都會有一個電壓檢測電路。

功率檢測

為了監(jiān)測和控制功放增益,實現(xiàn)最優(yōu)的線性度和效率,有必要精確測量功放輸出端上復(fù)雜的RF信號的功率電平。一般情況下,功放的輸出電壓驅(qū)動天線,采用定向耦合器對功放輸出電壓進(jìn)行采樣,并適當(dāng)衰減,然后輸入到功率檢測器或者ADC中,將功率檢測器或ADC的輸出,即發(fā)射輸出信號的測量結(jié)果同DAC輸出值比較,調(diào)節(jié)功放增益,使差值為零。

GaN功率放大器上電順序

為了防止在Vd正常上電時,因為Vgs電壓過高,導(dǎo)致PA在飽和模式下工作,因為熱損而損壞PA。GaN 功放的上下電必須按照一定的順序進(jìn)行:

1.Vgs先上電。確保在Vd上電時,柵極已經(jīng)為低。

2.啟動漏極電壓電源,Vd上電至標(biāo)稱值。

3.增加Vgs偏置電壓,達(dá)到設(shè)置所需的輸出功率。

4.啟動RF信號。

簡單說就是

開PA順序是:接通柵極、接通漏極、柵極調(diào)整、輸入RF

關(guān)PA順序是:關(guān)閉RF、柵極調(diào)整、關(guān)閉漏極、關(guān)閉柵極

離散器件實現(xiàn)GaN功率放大器的監(jiān)測和控制

下圖是使用離散器件對功放監(jiān)測和控制的結(jié)構(gòu)。所有的離散器件都可以通過同類型的數(shù)據(jù)總線進(jìn)行操作的,一般使用I2C數(shù)據(jù)總線。
從設(shè)計的觀點來看,使用離散器件實現(xiàn)監(jiān)測和控制的主要優(yōu)點是,可以從眾多器件中選出最合適的元件。比如按照自己的設(shè)計需求選取合適的采樣精度和采樣率,接口和通道數(shù)的ADC和DAC等。缺點同樣很明顯,就是所需芯片數(shù)量較多,面積較大而且成本高。

pYYBAGQg9deARCXnAAD-HnsWOXM721.jpg

圖3 采用離散器件實現(xiàn)功率放大器的監(jiān)測和控制

集成方案實現(xiàn)GaN功率放大器的監(jiān)測和控制

為減少器件數(shù)量,TI推出了許多新器件,具有集成了多通道ADC、DAC、精密參考和溫度檢測等功能。AMC7932就是將多通道12bit ADC,多功能GPIO,高邊電流檢測,多通道分組雙極性電壓輸出12bit DAC以及溫度監(jiān)控等通用監(jiān)測和控制所需的所有功能和特性集成到一起。

poYBAGQg9diAHPnjAAEKxouGHCM072.png

圖4 采用AMC7932實現(xiàn)功率放大器的監(jiān)測和控制

AMC7932器件對PA進(jìn)行控制時,電流檢測電阻器Rsense)上的電壓會被輸入到AMC7932內(nèi)部6路12bit的ADC的輸入引腳。在內(nèi)部將該電壓轉(zhuǎn)換為電流值。外部微控制器可以通過SPI或者I2C讀取AMC7932內(nèi)部的寄存器值得到電流值。也可以和AMC7932內(nèi)部的可調(diào)門限值進(jìn)行比較,快速的進(jìn)行反應(yīng)。

AMC7932的遠(yuǎn)端溫度傳感器可以被放得靠近PA。當(dāng)PA工作時,遠(yuǎn)端傳感器記錄下溫度的變化情況并輸入AMC7932內(nèi)部6路12bit ADC的輸入口,就可以記錄到PA的溫度。AMC7932可以設(shè)定多組門限值,可以快速的對PA溫度的變化進(jìn)行門限比較和控制。并可將該信息發(fā)送到外部微控制器。該微控制器可根據(jù)來自LUT的數(shù)據(jù)對AMC7932 DAC進(jìn)行更新,使其達(dá)到規(guī)定電壓值。

AMC7932有32路(2組)12bit的雙極性電壓DAC,它輸出非常靈活,可以輸出兩組正電壓,兩組負(fù)電壓或者一組正電壓一組負(fù)電壓。因此可支持各類PA的檢測和控制。 比如:用一組16路DAC對多個LDMOS PA進(jìn)行偏置控制,同時用另一組16路DAC對多個GaN PA進(jìn)行偏置。

結(jié)論

5G的Massive MIMO架構(gòu)以及GaN PA普及使得基站內(nèi)的天線通道數(shù)量急劇提升。對應(yīng)的PA需求量更是爆發(fā)式增長。設(shè)備商們不得不采用復(fù)雜,高密度多功能的PA檢測和控制技術(shù)。AMC7932的單片解決方案在使得PA檢測和控制部分在電路板面積、系統(tǒng)可靠性和成本方面具有顯著的優(yōu)勢。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微控制器
    +關(guān)注

    關(guān)注

    48

    文章

    7336

    瀏覽量

    150107
  • 傳感器
    +關(guān)注

    關(guān)注

    2541

    文章

    49961

    瀏覽量

    747516
  • 射頻
    +關(guān)注

    關(guān)注

    102

    文章

    5471

    瀏覽量

    166944
收藏 人收藏

    評論

    相關(guān)推薦

    國產(chǎn)GaN控制芯片在快充領(lǐng)域的優(yōu)勢與不足

    國外廠商主流的GaN快充主控芯片,其中安森美NCP1342解決方案被眾多廠商使用。其實,除了國外的GaN控制
    的頭像 發(fā)表于 09-03 08:03 ?6551次閱讀

    適用于RF基站的AMC解決方案的實施

    動態(tài)控制PA的柵極電壓以維持所需的漏極電流(IDSQ),自動化監(jiān)測與控制AMC解決方案就能克服非線性方面的困難。 本系列第1部分和第2部分所提的電流和溫度
    發(fā)表于 09-10 14:48

    橋接電機(jī)控制和高級通信的芯片驅(qū)動器解決方案

    標(biāo)準(zhǔn)。它通過體積小、功耗低的芯片解決方案在工業(yè)自動化、工廠自動化或工業(yè)通信等應(yīng)用中為設(shè)計人員提供幫助。主要特色EtherCAT 和 EnDat 的結(jié)合為用戶提供了橋接電機(jī)控制和高級通
    發(fā)表于 12-29 15:25

    使用分立元件的功放監(jiān)測與控制解決方案討論

    和電流傳感器,以及芯片的集成解決方案,在基站中使用這些產(chǎn)品可以監(jiān)測和控制各種類型的模擬信號。分立的傳感器和數(shù)據(jù)轉(zhuǎn)換器能夠提供最大的性能和配置靈活性,而集成
    發(fā)表于 06-17 08:13

    GaN解決方案門戶上查看TI完整的GaN直流/直流轉(zhuǎn)換產(chǎn)品組合

    GaN解決方案——采用TPS53632G 無驅(qū)動器脈寬調(diào)制(PWM)控制器和LMG5200 80V GaN半橋功率級(驅(qū)動器和
    發(fā)表于 07-29 04:45

    MT7932高功率0.9/led驅(qū)動芯片/最大電流100w

    MT7932 是一個級、高功率因子(PF)、原邊控制交流轉(zhuǎn)直流LED驅(qū)動芯片。MT7932 集成片上功率因數(shù)校正(PFC)功能,在斷續(xù)導(dǎo)通
    發(fā)表于 08-15 09:12

    基于FPGA芯片實現(xiàn)ARM系統(tǒng)設(shè)計解決方案

    和ASIC中實現(xiàn)的硬核IP等。圖1即使如此,通用嵌入式系統(tǒng)也很難滿足現(xiàn)代設(shè)計需求。多芯片解決方案實現(xiàn)起來相對容易一些,但是成本高,缺乏設(shè)計人員所要求的靈活性以及性能/功耗指標(biāo)。采用了軟
    發(fā)表于 07-12 08:00

    AMC7932如何實現(xiàn)GaN功放檢測控制

    的關(guān)鍵技術(shù)部分——射頻功率器件也迎來了重大變化。目前基站功率放大器主要為LDMOS技術(shù)和GaAs技術(shù)。GaN PA由于具有帶寬更寬…
    發(fā)表于 11-08 07:37

    AMC7932在MIMO系統(tǒng)中的優(yōu)勢介紹

    的PA性能。TI的AMC7932集成了32路12bitDAC,為客戶提供更好的PA控制解決方案。在某些系統(tǒng)中,會出現(xiàn)不同PA共用一路柵壓的情況。在理想狀態(tài)下,這種應(yīng)用沒有問題,因為相同型號的PA要求的柵
    發(fā)表于 11-09 06:04

    AMC7932芯片解決方案實現(xiàn)GaN功放檢測控制

    擴(kuò)展到4.9GHz,甚至28GHz,所以5G系統(tǒng)中的關(guān)鍵技術(shù)部分——射頻功率器件也迎來了重大變化。目前基站功率放大器主要為LDMOS技術(shù)和GaAs技術(shù)。GaN PA由于具有帶寬更寬、高功率附加效率、功率密度更大、體積更小,能較好的適用于大規(guī)模MIMO…
    發(fā)表于 11-10 09:36 ?1727次閱讀
    <b class='flag-5'>AMC7932</b><b class='flag-5'>單</b><b class='flag-5'>芯片</b><b class='flag-5'>解決方案</b>可<b class='flag-5'>實現(xiàn)</b><b class='flag-5'>GaN</b><b class='flag-5'>功放</b>的<b class='flag-5'>檢測</b>與<b class='flag-5'>控制</b>

    AMC7932芯片解決方案實現(xiàn)GaN功放檢測控制

    AMC7932芯片解決方案實現(xiàn)GaN功放
    發(fā)表于 10-31 08:23 ?0次下載
    <b class='flag-5'>AMC7932</b><b class='flag-5'>單</b><b class='flag-5'>芯片</b><b class='flag-5'>解決方案</b><b class='flag-5'>實現(xiàn)</b><b class='flag-5'>GaN</b><b class='flag-5'>功放</b>的<b class='flag-5'>檢測</b>與<b class='flag-5'>控制</b>

    TI多通道PA控制AMC7932在MIMO系統(tǒng)中的優(yōu)勢

    TI多通道PA控制AMC7932在MIMO系統(tǒng)中的優(yōu)勢
    發(fā)表于 10-31 08:23 ?0次下載
    TI多通道PA<b class='flag-5'>控制</b>器<b class='flag-5'>AMC7932</b>在MIMO系統(tǒng)中的優(yōu)勢

    TI多通道PA控制AMC7932在MIMO系統(tǒng)中的優(yōu)勢

    PA控制器用在基站系統(tǒng)中為PA提供所需的精確柵壓。當(dāng)前MIMO系統(tǒng)的通道數(shù)較多,同時,每一通道的PA級數(shù)也較多,意味著如果不考慮柵壓復(fù)用情況,設(shè)計者需要更多的PA控制器來進(jìn)行柵壓控制,以達(dá)到更好的PA性能。TI的
    的頭像 發(fā)表于 03-29 09:21 ?1081次閱讀
    TI多通道PA<b class='flag-5'>控制</b>器<b class='flag-5'>AMC7932</b>在MIMO系統(tǒng)中的優(yōu)勢

    AMC7932 32通道12位模擬監(jiān)控器和控制器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《AMC7932 32通道12位模擬監(jiān)控器和控制器數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 07-15 11:03 ?0次下載
    <b class='flag-5'>AMC7932</b> 32通道12位模擬監(jiān)控器和<b class='flag-5'>控制</b>器數(shù)據(jù)表

    利用AMC3311為AMC23C11供電以實現(xiàn)隔離式檢測和故障檢測

    電子發(fā)燒友網(wǎng)站提供《利用AMC3311為AMC23C11供電以實現(xiàn)隔離式檢測和故障檢測.pdf》資料免費(fèi)下載
    發(fā)表于 08-30 10:30 ?0次下載
    利用<b class='flag-5'>AMC</b>3311為<b class='flag-5'>AMC</b>23C11供電以<b class='flag-5'>實現(xiàn)</b>隔離式<b class='flag-5'>檢測</b>和故障<b class='flag-5'>檢測</b>