1.0簡(jiǎn)介
很多新型EW系統(tǒng)需要低噪聲接收機(jī),能夠耐受多個(gè)倍頻程帶寬 范圍內(nèi)的寬輸入功率變化。 這些接收機(jī)是保護(hù)敏感元器件免受 RF過驅(qū)影響、消除傳入信號(hào)AM調(diào)制所必需的。 此外,由于采用 多通道系統(tǒng)設(shè)計(jì)并且靠近接收機(jī)天線,因而需要低功耗和小封 裝尺寸。 應(yīng)用包括IFM和測(cè)向前端、DRFM和干擾器系統(tǒng)。 這些 系統(tǒng)必須在很寬的溫度范圍內(nèi)工作,在所有工作條件下都需要 平坦的頻率響應(yīng)和低諧波成分。 ADI的限幅放大器擁有業(yè)界領(lǐng)先 的封裝尺寸、電氣/RF性能,易于集成到更高級(jí)別的組件中,非 常適合很多前述應(yīng)用。 微波限幅放大器是高增益多級(jí)放大器, 隨著輸入功率增加而連續(xù)壓縮內(nèi)部增益級(jí),從而限制輸出功 率。 增益級(jí)從輸出級(jí)向輸入壓縮,其設(shè)計(jì)經(jīng)過優(yōu)化,能夠在所 有工作條件下避免各個(gè)增益級(jí)過驅(qū)。 寬帶限幅放大器設(shè)計(jì)面臨 著諸多挑戰(zhàn),包括有效功率限制、熱補(bǔ)償、多個(gè)倍頻程帶寬范 圍內(nèi)的頻率均衡。 此外,低噪聲、低功耗和小封裝尺寸的系統(tǒng) 要求也增加了設(shè)計(jì)的復(fù)雜性。
本文將回顧2 GHz至18 GHz限幅放大器的設(shè)計(jì)考慮因素和技巧, 要求45±1.5 dB的增益、–40°C至+85°C的工作溫度范圍、小于1.5 W dc功率、40 dB的限幅動(dòng)態(tài)范圍。 限幅動(dòng)態(tài)范圍定義為RF輸出 功率固定的輸入功率范圍。 ADI提供2 GHz至18 GHz寬帶限幅放 大器產(chǎn)品HMC7891HMC7891,滿足上述要求。 該放大器包括內(nèi)部穩(wěn)壓功 能,采用密封連接器式封裝。
2.0 構(gòu)建和放大器考慮因素
微波限幅放大器設(shè)計(jì)首先是選擇首選構(gòu)建方法和內(nèi)部增益級(jí) 放大器。 對(duì)于高頻應(yīng)用,混合芯片和電線組件通常優(yōu)于表面 貼裝設(shè)計(jì),以便最大程度地減少由于封裝寄生效應(yīng)導(dǎo)致的不 良性能影響,混合芯片和電線組件的可靠性非常出色,因?yàn)?混合組件經(jīng)過了徹底檢測(cè),能夠很好地應(yīng)對(duì)環(huán)境壓力。 此 外,這些組件體積小,重量輕,易于密封。 混合芯片和電線 組件包括裸片形式的單芯片微波集成電路(MMIC)、薄膜技術(shù)、 可線焊的無源組件。
選擇內(nèi)部增益級(jí)的主要考慮因素包括工作頻率范圍、增益與溫 度的關(guān)系、增益平坦度、飽和諧波成分、非線性性能。 成功的限幅放大器設(shè)計(jì)應(yīng)該最大程度地減少增益級(jí)和專用器件數(shù),以 減少熱補(bǔ)償和平坦度問題。 此外,設(shè)計(jì)成功很大程度上還取決 于器件最大輸入功率額定值,以及所選增益級(jí)的壓縮特性。 為 了完成具有40 dB限幅動(dòng)態(tài)范圍要求的設(shè)計(jì),建議部署至少四個(gè) 增益級(jí),理想情況下,每個(gè)放大器級(jí)將在小于10 dB的壓縮條件 下工作。 四個(gè)增益級(jí)還應(yīng)在溫度范圍內(nèi)充分實(shí)現(xiàn)45 dB的小信號(hào) 增益要求。
由于具有高增益和低功耗性能,寬帶MMIC增益模塊放大器或低 噪聲放大器(LNA)適合用于限幅放大器設(shè)計(jì)。 噪聲系數(shù)要求通常需要使用低噪聲放大器,而不是增益模塊放大器。 但是,由于 RF輸入功率額定值通常較低,LNA增益級(jí)可能帶來設(shè)計(jì)挑戰(zhàn)。 理想的增益級(jí)器件具有較高的最大RF輸入功率額定值,在高壓 縮級(jí)別下能夠安全工作。
另一個(gè)重要考慮因素是每個(gè)增益級(jí)的飽和諧波成分。 諧波成分 要求取決于限幅放大器的應(yīng)用。 例如,對(duì)于旨在生成方波輸出 波形的應(yīng)用,需要使用具有較低偶次諧波輸出和較強(qiáng)奇次諧波 輸出的增益級(jí)放大器。 為了避免破壞輸出波形,最好在所有四 個(gè)增益級(jí)位置使用相同的器件。 最后,所選MMIC放大器必須無 條件地保持穩(wěn)定,理想情況下無偏置序列要求,以簡(jiǎn)化設(shè)計(jì)。
HMC462 是完成限幅放大器設(shè)計(jì)的理想MMIC。 HMC462是一款自 偏置LNA,僅需單個(gè)5 V電源,提供大于13 dB的增益、2 GHz至18 GHz的極佳增益平坦度、平均2.5 dB的噪聲系數(shù)。 該器件具有18 dBm的飽和輸出功率電平,能夠在頻段范圍內(nèi)安全地運(yùn)行大于 14 dB的壓縮。 最大輸入功率額定值幾乎與器件的飽和輸出功 率相等,這使得它非常適合在一系列級(jí)聯(lián)增益級(jí)中工作。 二階 諧波很低,MMIC具有強(qiáng)大的平坦三階諧波。 飽和dc功率低于 400 mW。
3.0 RF預(yù)算分析
選擇限幅放大器增益級(jí)后,接下來應(yīng)考慮RF系統(tǒng)預(yù)算分析。 RF 預(yù)算分析檢查限幅放大器內(nèi)不同測(cè)試點(diǎn)的寬帶頻率響應(yīng)和RF功 率電平。 必須完成分析,才能針對(duì)最壞情況的工作溫度、增益 斜率和寬RF輸入功率范圍進(jìn)行校正。 如第2.0部分所述,具有40 dB限幅動(dòng)態(tài)范圍的限幅放大器的基本布局是級(jí)聯(lián)的四個(gè)增益模 塊放大器或LNA。 理想的設(shè)計(jì)僅使用一個(gè)或兩個(gè)專用放大器器件,以減少在不同頻率下的功率變化,最大程度地減少熱/斜 率補(bǔ)償需求。
圖1顯示了溫度校正和斜率補(bǔ)償之前的首批初始限幅放大器框 圖。 完成寬帶限幅放大器設(shè)計(jì)的一種推薦技巧是:
1.管理限幅功率動(dòng)態(tài)范圍,消除RF過驅(qū)條件。
2.優(yōu)化溫度范圍內(nèi)的性能
3.最后,校正功率滾降,將小信號(hào)增益變平。
4.最后一個(gè)細(xì)微校正可能是必需的,即在頻率均衡功能被納入 設(shè)計(jì)后,重新考慮溫度補(bǔ)償。
圖1. 初步設(shè)計(jì)框圖。
3.1 功率限制
圖1所示初步設(shè)計(jì)的主要問題是,隨著RF輸入功率增加,RF過 驅(qū)很可能在輸出增益級(jí)發(fā)生。 當(dāng)任何增益級(jí)的飽和輸出功率超 過隊(duì)列中下一個(gè)放大器的絕對(duì)最大輸入時(shí),將發(fā)生RF過驅(qū)。 此 外,設(shè)計(jì)容易出現(xiàn)與VSWR相關(guān)的紋波,由于小型RF封裝中的高 無阻尼增益,還很可能出現(xiàn)振蕩。
為了防止RF過驅(qū)、消除VSWR效應(yīng)并降低振蕩風(fēng)險(xiǎn),可在各增益 級(jí)之間添加固定衰減器,以降低功率和增益。 RF蓋上還可能需 要RF吸收器以消除振蕩。 需要足夠的衰減,將各增益級(jí)的最大 輸入功率減小到MMIC的額定輸入功率電平以下。 必須包括足夠 的衰減,以容納頂級(jí)輸入功率裕量,適應(yīng)溫度變化和器件間差 異。 圖2顯示了限幅放大器鏈中需要RF衰減器的位置。
圖2 . RF過驅(qū)校正框圖。
ADI的寬帶限幅放大器HMC7891采用四個(gè)HMC462增益級(jí),以便 讓工作范圍達(dá)到10 dBm。 絕對(duì)最大輸入功率為15 dBm。 各增益 級(jí)能夠耐受18 dBm的最大RF輸入。 按照上一段中概述的設(shè)計(jì)步 驟,已在兩個(gè)增益級(jí)之間添加衰減器,以確保最大放大器輸入 功率電平不超過17 dBm。 圖3顯示在設(shè)計(jì)中添加固定衰減器的 情況下,每個(gè)增益級(jí)輸入端的最大功率電平。
圖3. 仿真POUT和頻率的關(guān)系,RF過驅(qū)校正
3.2 熱補(bǔ)償
第二個(gè)步驟是對(duì)設(shè)計(jì)進(jìn)行熱補(bǔ)償,以便擴(kuò)大工作溫度范圍。 限 幅放大器應(yīng)用的通用熱范圍要求為-40°C至+85°C。 根據(jù)經(jīng)驗(yàn), 0.01 dB/°/級(jí)的增益變化公式可用于估算四級(jí)放大器設(shè)計(jì)的增益 變化。 增益隨著溫度降低而增加,反之亦然。 使用周邊環(huán)境增 益作為基線,總增益預(yù)期在85°C下降低2.4 dB,在–40°C下上升 2.6 dB。
為對(duì)設(shè)計(jì)進(jìn)行熱補(bǔ)償,可插入市售的Thermopad溫度可變衰減 器,以取代固定衰減器。 圖4顯示了市售的寬帶Thermopad衰減 器的測(cè)試結(jié)果。 根據(jù)Thermopad測(cè)試數(shù)據(jù)和估算的增益變化,顯 然需要使用兩個(gè)Thermopad衰減器,對(duì)四級(jí)限幅放大器設(shè)計(jì)進(jìn)行 熱補(bǔ)償。
圖4. 溫度范圍內(nèi)的Thermopad損耗。
決定在何處插入Thermopad是一個(gè)重要決策。 由于Thermopad衰 減器的損耗會(huì)增加,特別是在低溫條件下,因此避免在接近RF 鏈輸出端的位置添加元器件是一種好的做法,這是為了維持較 高的限制輸出功率電平。 Thermopad的理想位置是在前三個(gè)放大 器級(jí)之間,也就是圖5中突出顯示的位置。
圖5. 熱補(bǔ)償框圖。
ADI的熱補(bǔ)償HMC7891小信號(hào)性能的仿真結(jié)果如圖6所示。 在頻 率均衡之前,增益變化減少至最高2.5 dB。 這在±1.5 dB增益變 化要求的范圍內(nèi)。
圖6. 溫度范圍內(nèi)的HMC7891仿真小信號(hào)增益。
3.3 頻率均衡
從而補(bǔ)償大多數(shù)寬帶放大器中的自然增益滾降。 有各種均衡器 設(shè)計(jì),包括無源GaAs MMIC芯片。 無源MMIC均衡器尺寸小巧, 沒有直流和控制信號(hào)要求,因此非常適合限幅放大器設(shè)計(jì)。 需 要的頻率均衡器數(shù)量取決于限幅放大器的未補(bǔ)償增益斜率,以 及所選均衡器的響應(yīng)。 一條設(shè)計(jì)建議是輕微地過度補(bǔ)償頻率響 應(yīng),以抵消傳輸線路損耗和連接器損耗,以及在較高頻率下對(duì) 增益影響更大的封裝寄生效應(yīng)。 圖7顯示了定制ADI GaAs頻率均 衡器的測(cè)試結(jié)果。
圖7. 測(cè)量的頻率均衡器損耗。
ADI的HMC7891限幅放大器需要三個(gè)頻率均衡器,以校正經(jīng)過熱 補(bǔ)償?shù)男⌒盘?hào)響應(yīng)。 圖8顯示了HMC7891經(jīng)過熱補(bǔ)償和頻率均衡 的仿真結(jié)果。 決定在何處插入均衡器對(duì)成功設(shè)計(jì)至關(guān)重要。 在 添加任何均衡器之前,切記理想的限幅放大器應(yīng)在所有增益級(jí) 之間均勻分布最大放大器壓縮,以避免過度飽和。 換而言之, 在最壞條件下,每個(gè)MMIC應(yīng)該同等壓縮。
圖8. 溫度范圍內(nèi)的HMC7891仿真頻率均衡小信號(hào)增益。
在圖5所示的當(dāng)前設(shè)計(jì)階段,可在器件輸入端添加與Thermopad 衰減器串聯(lián)的均衡器,取代器件輸出端的固定衰減器。 在限幅 放大器輸入端添加均衡器會(huì)降低第一個(gè)增益級(jí)的功率。 因此, 級(jí)1的壓縮減小。 增益級(jí)壓縮減小相當(dāng)于限幅動(dòng)態(tài)范圍減小。 另外,由于均衡器的衰減斜率,限幅動(dòng)態(tài)范圍在頻率范圍內(nèi)分 散。 頻率越低,動(dòng)態(tài)范圍縮小越多。 為了補(bǔ)償縮小的限幅動(dòng)態(tài) 范圍,RF輸入功率必須升高。 但是,由于均衡器的斜率,輸入 功率不均勻地升高又會(huì)增加放大器增益級(jí)過驅(qū)的風(fēng)險(xiǎn)。 可以在 器件輸入端添加均衡器,但這不是理想的位置。
其次,添加與Thermopad串聯(lián)的均衡器,將減小后續(xù)放大器的壓 縮。 這會(huì)導(dǎo)致放大器壓縮在增益級(jí)之間分布不均勻,縮小整體 限幅動(dòng)態(tài)范圍。 不建議將均衡器與Thermopad衰減器串聯(lián)。
第三,使用一個(gè)或多個(gè)均衡器替代固定衰減器,只會(huì)改變輸出 級(jí)放大器的壓縮水平。 為了最大程度地減小這種變化,并且避 免RF過驅(qū),均衡器損耗應(yīng)與從系統(tǒng)中刪除的固定衰減值大致相 等。 此外,正如上文所述,在增益級(jí)之前添加均衡器,將會(huì)導(dǎo) 致限幅動(dòng)態(tài)范圍與頻率的分散。 為了最大程度地減少這種效 應(yīng),請(qǐng)?zhí)鎿Q盡可能少的均衡器。
最后,均衡器可以添加到器件輸出端。 輸出均衡會(huì)減小輸出功 率,但不會(huì)產(chǎn)生限幅動(dòng)態(tài)范圍分散。 輸出均衡會(huì)產(chǎn)生略正輸出 功率斜率,但這種斜率被高頻封裝和連接器損耗抵消。 完成的 四級(jí)限幅放大器布局如圖9所示。
圖9. 頻率均衡框圖。
圖10顯示了ADI HMC7891的輸出功率與溫度仿真結(jié)果。 最終設(shè)計(jì) 實(shí)現(xiàn)了40 dB的限幅動(dòng)態(tài)范圍,在所有工作條件下,仿真的最壞 情況輸出功率變化為3 dB。
圖10. 溫度范圍內(nèi),HMC7891的仿真PSAT與頻率的關(guān)系。
4.0 ADI限幅放大器測(cè)試結(jié)果
HMC7891的測(cè)試結(jié)果如圖11至圖18所示。 這些結(jié)果證明,該設(shè) 計(jì)能夠?qū)崿F(xiàn)47 dB的增益,飽和輸出功率為13 dBm。 放大器的輸 入功率范圍為-30 dBm至+10 dBm,限幅動(dòng)態(tài)范圍為40 dB。 該裝 置在–40°C至+85°C的工作溫度范圍中進(jìn)行了測(cè)試。 下面的圖19 顯示了HMC7891的照片。 雖然HMC7891最初是作為限幅放大器 設(shè)計(jì)的,但憑借小巧尺寸和出色的RF性能,它在各種不同應(yīng)用 中都能發(fā)揮作用,包括用作三倍頻器和LO放大器。 本文所述的 設(shè)計(jì)技術(shù)可用于未來的限幅放大器設(shè)計(jì),對(duì)規(guī)格要求進(jìn)行了修 改,例如頻率、輸出功率、增益、噪聲系數(shù)或限幅動(dòng)態(tài)范圍。
圖11. 溫度范圍內(nèi),HMC7891的測(cè)量PSAT與頻率的關(guān)系。
圖12. HMC7891的測(cè)量增益和回波損耗。
圖13. 溫度范圍內(nèi),頻率為2 GHz時(shí),HMC7891的測(cè)量POUT與PIN的關(guān)系。
圖14. 溫度范圍內(nèi),頻率為10 GHz時(shí),HMC7891的測(cè)量POUT與PIN的關(guān)系。
圖15. 溫度范圍內(nèi),頻率為18 GHz時(shí),HMC7891的測(cè)量POUT與PIN的關(guān)系。
圖16. 溫度范圍內(nèi),HMC7891的測(cè)量噪聲系數(shù)與頻率的關(guān)系。
圖17. 溫度范圍內(nèi),HMC7891在PSAT下的測(cè)量二次諧波與頻率的關(guān)系。
圖18. HMC7891在PSAT下的測(cè)量三次諧波與頻率的關(guān)系。
作者:Adam Winter、Jerry Cornwell
審核編輯:湯梓紅
-
放大器
+關(guān)注
關(guān)注
143文章
13528瀏覽量
212908 -
adi
+關(guān)注
關(guān)注
144文章
45810瀏覽量
248211 -
寬帶
+關(guān)注
關(guān)注
4文章
986瀏覽量
60163 -
接收機(jī)
+關(guān)注
關(guān)注
8文章
1177瀏覽量
53376 -
RF
+關(guān)注
關(guān)注
65文章
3038瀏覽量
166748
原文標(biāo)題:寬帶高動(dòng)態(tài)范圍限幅放大器
文章出處:【微信號(hào):CloudBrain-TT,微信公眾號(hào):云腦智庫】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論