當(dāng)電氣工程師提到“電源管理”這個(gè)詞時(shí),大多數(shù)人會(huì)想到各種具有轉(zhuǎn)換器、穩(wěn)壓器和其他功率處理以及功率轉(zhuǎn)換功能的直流電源。但是,電源管理遠(yuǎn)不止這些功能。由于效率不夠,所有電源都會(huì)發(fā)熱并且所有組件都必須散熱。
因此,電源管理也涉及熱管理,尤其是電源相關(guān)功能的散熱會(huì)如何影響散熱設(shè)計(jì)與熱量累積。此外,即使組件和系統(tǒng)都在規(guī)格范圍內(nèi)持續(xù)工作,隨著組件參數(shù)漂移,溫度的增加也會(huì)引起性能的變化。就算不是全盤崩潰,也會(huì)導(dǎo)致最終的系統(tǒng)故障。熱量還會(huì)縮短組件壽命,進(jìn)而縮短平均故障間隔時(shí)間,這也是保證長(zhǎng)期可靠性需要考慮的因素。
有兩個(gè)關(guān)于熱管理的觀點(diǎn),設(shè)計(jì)人員必須了解:
● | “微觀”問題,單個(gè)組件由于發(fā)熱過多而處于過熱危險(xiǎn)中,但系統(tǒng)的其余部分(及其外殼)溫度在可接受范圍內(nèi)。 |
● | “宏觀”問題,由于多個(gè)來源的熱量累積而導(dǎo)致整個(gè)系統(tǒng)溫度過高。 |
一個(gè)設(shè)計(jì)挑戰(zhàn)是確定熱管理問題有多少屬于微觀,多少屬于宏觀,以及微觀問題與宏觀問題的關(guān)聯(lián)程度。很顯然,一個(gè)高溫組件 - 甚至溫度超過了其允許的極限-將會(huì)導(dǎo)致整個(gè)系統(tǒng)升溫,但這不一定意味著整個(gè)系統(tǒng)都很熱。但是,這意味著必須設(shè)法管理并減少該組件多余的熱量。
在討論熱管理和使用諸如“散熱”或“排熱”等詞時(shí)始終要牢記的一個(gè)問題是:這些熱量要散到哪里去? 憤世嫉俗的人可能會(huì)說,設(shè)計(jì)師就是以鄰為壑,找到一個(gè)地方散熱,把自己的問題變成別人的問題。
雖然這個(gè)觀點(diǎn)的確有點(diǎn)憤世嫉俗,但也有一定的道理。問題是要把熱量發(fā)散到較冷的地方,以免對(duì)系統(tǒng)產(chǎn)生不利影響。這個(gè)地方可以是系統(tǒng)和機(jī)箱的相鄰部分,也可以完全在機(jī)箱外部(僅當(dāng)外部比內(nèi)部溫度低時(shí)才有可能)。另外還要記住熱力學(xué)的一個(gè)定律:除非使用某種主動(dòng)泵送機(jī)械,否則熱量只會(huì)從高溫位置向低溫位置傳遞。
熱管理解決方案
熱管理遵循物理學(xué)基本原理。在制冷模式下,熱傳導(dǎo)有三種方式:輻射、傳導(dǎo)和對(duì)流。
最簡(jiǎn)單的說法是:
● | 輻射是指用電磁輻射(主要是紅外線)帶走熱量,這種熱傳遞可以發(fā)生在真空中。在大多數(shù)應(yīng)用中,這都不是主要的冷卻途徑,但在太空真空中就是。在太空中,輻射是從宇宙飛船吸走熱量的唯一途徑。 |
● | 傳導(dǎo)是通過固體或液體的熱量流動(dòng),不過傳熱材料并不發(fā)生實(shí)際移動(dòng)(當(dāng)然液體確實(shí)會(huì)流動(dòng))。 |
● | 對(duì)流是像空氣或水這樣的流體介質(zhì)攜帶的熱量流動(dòng)。 |
對(duì)于大多數(shù)電子系統(tǒng)來說,實(shí)現(xiàn)所需的冷卻是先以傳導(dǎo)的方式讓熱量離開直接熱源,然后再以對(duì)流的方式將其傳遞到其他地方。設(shè)計(jì)上的挑戰(zhàn)是需要將各種熱管理硬件(即原始的非電子意義上的硬件)結(jié)合起來,以有效地實(shí)現(xiàn)所需的傳導(dǎo)和對(duì)流。
有三個(gè)最常用的散熱元件:散熱器、熱管和風(fēng)扇。散熱器和熱管是無需電源的無源冷卻系統(tǒng),其還包括自然引發(fā)的傳導(dǎo)和對(duì)流方法。相比之下,風(fēng)扇是一種有源的強(qiáng)制風(fēng)冷系統(tǒng)。
先從散熱器開始
散熱器是鋁或銅結(jié)構(gòu),可通過傳導(dǎo)作用從熱源獲取熱量,并將熱量傳到氣流(在某些情況下,傳到水或其他液體)中以實(shí)現(xiàn)對(duì)流。散熱器有數(shù)千種尺寸規(guī)格和形狀,從連接單個(gè)晶體管的小型沖壓金屬翅片到具有許多可以攔截對(duì)流空氣流并將熱量傳輸?shù)皆摎饬鞯某崞ㄖ感危┑拇笮蛿D壓件。
散熱器的優(yōu)點(diǎn)之一是沒有移動(dòng)部件,沒有運(yùn)行成本,也沒有故障模式。一旦適當(dāng)尺寸的散熱器連接到熱源,隨著暖空氣上升,對(duì)流就會(huì)自然而然地發(fā)生,從而開始并持續(xù)形成氣流。因此,在使用散熱器給熱源的入口和出口之間提供暢通的氣流時(shí),這些優(yōu)點(diǎn)至關(guān)重要。 而且,入口必須在散熱器的下方并且出口在上方;否則,熱空氣會(huì)停滯在熱源之上,從而使情況進(jìn)一步惡化。
盡管散熱器易于使用,但它也的確有一些負(fù)面影響。首先,傳輸大熱量的散熱器體積大、成本高、重量大。而且它們必須正確放置,因此會(huì)影響或限制電路板的物理布局。它們的翅片也可能被氣流中的灰塵堵塞,從而大大降低效率。它們必須正確連接到熱源上,以使熱量能夠暢通地從熱源流向散熱器。
由于散熱器在尺寸、配置以及其他因素上有非常豐富的選擇,剛開始會(huì)使我們?cè)谶x購時(shí)眼花繚亂。請(qǐng)注意,有許多通用散熱器以及針對(duì)特定集成電路 (IC),例如特定處理器或現(xiàn)場(chǎng)可編程門陣列 (FPGA) 型號(hào)的散熱器。
另外還有不是分立組件的散熱器。有些IC使用引腳或引線將熱量從其芯片和主體傳導(dǎo)到其PC板上,就相當(dāng)于是散熱器。其他的IC實(shí)際上在其封裝下有一個(gè)銅塞,當(dāng)它被焊接到PC板上時(shí),這個(gè)金屬塊可用于為芯片降溫。這是一種低成本而又有效的散熱方式,但是這得假定PC板其余部分溫度較低并且附近沒有其他組件也使用該板散熱。實(shí)際上,每個(gè)器件都試圖將多余的廢熱排放到鄰近區(qū)域,這是一場(chǎng)零和游戲。
增加熱管
熱管理套件的另一個(gè)重要器件是熱管。這種無源組件接近于工程師所期望的“幾乎無成本”,因?yàn)樗恍枰魏涡问降闹鲃?dòng)強(qiáng)制機(jī)制就可以將熱量從A點(diǎn)傳送到B點(diǎn)。簡(jiǎn)單來說就是,熱管是包含芯和工作流體的密封金屬管。熱管的作用是從熱源吸收熱量并將其傳送到較冷的區(qū)域,但它本身不作為散熱器。當(dāng)熱源附近沒有足夠的空間放置散熱器或氣流不足時(shí)便可以使用熱管。熱管工作效率高,可以將熱量從源頭傳送到更便于管理的地方。
熱管是如何工作的?它的原理簡(jiǎn)單而巧妙:它實(shí)現(xiàn)了形態(tài)轉(zhuǎn)變,這是熱物理學(xué)的一個(gè)基本原理。熱源在密封管內(nèi)將工作流體轉(zhuǎn)變成蒸汽,而蒸汽帶著熱量傳遞到熱管的較冷端。在這一端,蒸氣冷凝成液體并釋放出熱量,而流體再返回到較熱端。這種氣-液形態(tài)轉(zhuǎn)變過程是連續(xù)運(yùn)行的,并且僅由冷端和熱端的溫度差驅(qū)動(dòng)。
熱管有多種直徑和長(zhǎng)度,大部分的直徑大約在四分之一英寸到二分之一英寸之間,長(zhǎng)度在幾英寸到約一英尺之間。與水管一樣,直徑大的管道能傳送更多的熱量。在冷端連接散熱器或其他冷卻裝置可以解決氣流受阻的局部熱點(diǎn)的散熱問題。
增加風(fēng)扇
最后還有風(fēng)扇,它標(biāo)志著拋開無需電源的無源散熱器和熱管,走向強(qiáng)制風(fēng)冷的有源散熱裝置的第一步。風(fēng)扇可以解決散熱問題,但也有讓人頭痛的地方,所以設(shè)計(jì)師在使用時(shí)經(jīng)常心情復(fù)雜。
很顯然,風(fēng)扇會(huì)增加成本,需要空間,并且增加了系統(tǒng)噪音。作為一種機(jī)電器件,風(fēng)扇還容易發(fā)生故障,消耗能量并影響整個(gè)系統(tǒng)的效率。但在許多情況下,尤其是當(dāng)氣流路徑是彎曲、垂直的或者不暢通時(shí),它們通常是獲得足夠氣流的唯一途徑。許多應(yīng)用都使用那些僅在需要時(shí)才運(yùn)行的熱控制風(fēng)扇以降低轉(zhuǎn)速,從而降低功耗,并采用可在最佳運(yùn)行速度下最大限度降低噪音的葉片。
定義風(fēng)扇能力的關(guān)鍵參數(shù)是每分鐘空氣的單位長(zhǎng)度或單位體積流量。物理尺寸也是一個(gè)問題; 顯然,低轉(zhuǎn)速大風(fēng)扇可以產(chǎn)生與高轉(zhuǎn)速小風(fēng)扇相同的氣流,因此存在尺寸與速度的取舍平衡。 有些設(shè)計(jì)使用內(nèi)部導(dǎo)風(fēng)板來引導(dǎo)氣流通過熱區(qū)域和散熱器以獲得最佳性能。
建模及綜合仿真
單獨(dú)使用無源冷卻系統(tǒng)還是使用強(qiáng)制風(fēng)冷的有源系統(tǒng)往往是一個(gè)困難的決定。單獨(dú)的無源系統(tǒng)尺寸較大,但更高效且可靠,而風(fēng)扇卻可以在不能單獨(dú)使用無源冷卻的情況下發(fā)揮作用。
當(dāng)然,有些情況下單獨(dú)使用無源系統(tǒng)是不恰當(dāng)或者不切實(shí)際的。其中一個(gè)例子是汽車發(fā)動(dòng)機(jī)的熱管理問題。早期使用小型發(fā)動(dòng)機(jī)的汽車以汽缸頂部的翅片作為散熱器,進(jìn)行無源冷卻。 隨著發(fā)動(dòng)機(jī)的變大和熱負(fù)荷的增加,這些翅片變得大而笨重,因此加入了循環(huán)流體以將熱量從翅片上帶走并傳送到散熱器。當(dāng)汽車移動(dòng)時(shí)空氣通過該散熱器流動(dòng),這也是一種無源散熱系統(tǒng)。但最終,隨著發(fā)動(dòng)機(jī)變得更大,無源散熱方法已無法滿足需求,除非車輛移動(dòng),否則很容易過熱。因此,在散熱器后面增加一個(gè)風(fēng)扇,不管汽車的速度如何,都會(huì)讓空氣通過它。
建模和仿真對(duì)于高效熱管理策略至關(guān)重要,可用來確定需要多少冷氣以及如何實(shí)現(xiàn)冷卻。好消息是,這比射頻或電磁場(chǎng)的寄生和異常等其他類型的電子建模要容易和精確得多。
對(duì)于微型模型來說,熱源及其所有熱量流通路徑的特征在于它們的熱阻,而熱阻由其使用的材料、質(zhì)量和尺寸決定。建模顯示熱量如何從熱源流出,也是評(píng)估因自身散熱而導(dǎo)致熱事故的組件的第一步,例如高散熱IC、MOSFET和絕緣柵雙極晶體管 (IGBT),甚至是電阻。這些器件的供應(yīng)商通常提供熱模型,而這些模型能夠提供從熱源到器件表面的熱路徑細(xì)節(jié)(圖6)。
圖6:所安裝FET的機(jī)械模型 (左) 用于開發(fā)等效的熱阻模型 (右),以模擬器件的散熱情況 (資料來源:International Rectifier/Infineon)
請(qǐng)注意,對(duì)于某些組件,其各個(gè)表面的溫度可能不同。例如,芯片的底面自然會(huì)比封裝頂部的頂面更熱一些,所以供應(yīng)商可能會(huì)將封裝設(shè)計(jì)為向頂部傳送更多的熱量,從而更好地利用頂面散熱器。
一旦各組件代表的熱負(fù)載已知,下一步就是宏觀層面建模,這一點(diǎn)既簡(jiǎn)單又復(fù)雜。作為一階近似,通過各種熱源的氣流可以調(diào)整大小以將其溫度保持在允許的限值以下。使用空氣溫度、非強(qiáng)制氣流可用流量、風(fēng)扇氣流量和其他因素進(jìn)行基本的計(jì)算就可以大致了解溫度狀況。
下一步是使用各種熱源的模型以及位置、PC板、外殼表面和其他因素,對(duì)整個(gè)產(chǎn)品及其封裝進(jìn)行更復(fù)雜的建模。這種類型的建模基于計(jì)算流體動(dòng)力學(xué) (CFD),可以非常準(zhǔn)確地顯示封裝中每個(gè)位置的溫度 (圖7)。
圖7:使用計(jì)算流體動(dòng)力學(xué) (CFD) 分析,可以看到整個(gè)系統(tǒng)或電路板上的詳細(xì)熱分布情況。例如圖中可以看出該P(yáng)C板有三個(gè)主要熱源 (紅色),并且熱量可以在擴(kuò)展板上左右流動(dòng) (資料來源:Texas Instruments)
通過做出“假設(shè)”調(diào)整,設(shè)計(jì)人員可以查看更大的空氣端口是否需要更多空氣,確定其他氣流路徑是否更有效,識(shí)別使用更大或不同散熱器的差異之處,調(diào)查關(guān)于使用熱管移動(dòng)熱點(diǎn)的情況等。這些CFD建模軟件包可生成表格化數(shù)據(jù)以及散熱情況的彩色圖像。風(fēng)扇尺寸、氣流和位置的影響變化也很容易建模。
最后,建模還要解決另外兩個(gè)問題。首先,存在峰值與平均耗散的問題。熱耗散持續(xù)為1W的穩(wěn)態(tài)組件與熱耗散10W但具有10%間歇占空比的器件相比,具有不同的熱影響。原因是即使平均熱耗散相同,相關(guān)的熱質(zhì)量和熱流量也會(huì)導(dǎo)致不同的熱分布。大多數(shù)CFD應(yīng)用程序可以將靜態(tài)與動(dòng)態(tài)結(jié)合起來進(jìn)行分析。
其次,組件級(jí)微型模型必須考慮表面之間物理連接的不完善性,例如IC封裝頂部與散熱器之間的物理連接。如果這個(gè)連接有微小的間距,那么這條路徑的熱阻就會(huì)相對(duì)較高。因此,在這些表面之間通常使用薄的導(dǎo)熱墊來增強(qiáng)路徑的導(dǎo)熱性。
結(jié)論
熱管理是電源管理的一個(gè)重要方面,它需要將組件和系統(tǒng)保持在溫度限制范圍內(nèi)。無源解決方案從散熱器和熱管開始,并可以使用風(fēng)扇進(jìn)行有源冷卻而使制冷效果得到增強(qiáng)。組件級(jí)和成品級(jí)的系統(tǒng)建模允許設(shè)計(jì)人員對(duì)制冷策略進(jìn)行一階近似分析。使用計(jì)算流體動(dòng)力學(xué)做進(jìn)一步分析可以全面了解整體熱量情況以及制冷策略變化的影響。所有的熱管理解決方案都涉及尺寸、功率、效率、重量、可靠性以及成本等方面的權(quán)衡,并且必須對(duì)項(xiàng)目的優(yōu)先級(jí)和約束條件進(jìn)行評(píng)估。
審核編輯:郭婷
-
轉(zhuǎn)換器
+關(guān)注
關(guān)注
27文章
8601瀏覽量
146710 -
穩(wěn)壓器
+關(guān)注
關(guān)注
24文章
4206瀏覽量
93513 -
電源管理
+關(guān)注
關(guān)注
115文章
6140瀏覽量
144105
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論