0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

unity在stm32上的使用

CHANBAEK ? 來源:嵌入式記錄 ? 作者:獨(dú)處東漢 ? 2023-05-15 10:51 ? 次閱讀

unity在stm32上的使用

本文目標(biāo):unity在stm32上的使用。

按照本文的描述,應(yīng)該可以在你所處的硬件上跑通代碼。

先決條件:裝有編譯和集成的開發(fā)環(huán)境,比如:Keil uVision5。

板子硬件要求:無,芯片自帶的串口功能即可完成。

源碼獲取

Unity 是一個(gè)輕量級的 C 語言單元測試框架,它的設(shè)計(jì)理念是簡單易用。 Unity 支持測試套件和測試用例,同時(shí)提供了豐富的斷言函數(shù),包括比較、異常和日志等。

源碼入口:

GitHub - ThrowTheSwitch/Unity: Simple Unit Testing for C

https://github.com/ThrowTheSwitch/Unity/

圖片

源碼里面結(jié)構(gòu),接下來準(zhǔn)備一個(gè)stm32的基礎(chǔ)工程,把相關(guān)代碼移植進(jìn)去。

基礎(chǔ)工程

使用STM32CubeMX配置stm32的基本配置。 基本的配置如下:開啟swd調(diào)試,開啟外部時(shí)鐘,開啟串口

圖片

時(shí)鐘界面選項(xiàng)卡:

圖片

工程選項(xiàng)卡:

圖片

點(diǎn)擊右上角的的生成代碼:

圖片

使用keil打開工程,編譯工程,一切都是ok

圖片

開始移植

在工程中,新建Unity文件夾,將源碼添加進(jìn)根文件,然后添加進(jìn)工程,并設(shè)置對應(yīng)的編譯路徑,其中test_unity_conde.c是我自己新建的內(nèi)容。

圖片

圖片

設(shè)置頭文件路徑:

圖片

在main.c中,添加串口映射代碼,使用printf

/* USER CODE BEGIN 4 */
#ifdef __GNUC__
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
  return ch;
}

int fgetc(FILE * f)
{
  uint8_t ch = 0;
  HAL_UART_Receive(&huart1, (uint8_t *)&ch, 1, 0xffff);
  return ch;
}


/* USER CODE END 4 */

編譯代碼,報(bào)錯(cuò),新建一個(gè)自己的test_unity_conde.c源碼,添加報(bào)錯(cuò)的這兩個(gè)函數(shù)即可編譯通過。

圖片

main.c中的代碼:

圖片

unity_config.h內(nèi)容到位:

/* Unity Configuration
 * As of May 11th, 2016 at ThrowTheSwitch/Unity commit 837c529
 * Update: December 29th, 2016
 * See Also: Unity/docs/UnityConfigurationGuide.pdf
 *
 * Unity is designed to run on almost anything that is targeted by a C compiler.
 * It would be awesome if this could be done with zero configuration. While
 * there are some targets that come close to this dream, it is sadly not
 * universal. It is likely that you are going to need at least a couple of the
 * configuration options described in this document.
 *
 * All of Unity's configuration options are `#defines`. Most of these are simple
 * definitions. A couple are macros with arguments. They live inside the
 * unity_internals.h header file. We don't necessarily recommend opening that
 * file unless you really need to. That file is proof that a cross-platform
 * library is challenging to build. From a more positive perspective, it is also
 * proof that a great deal of complexity can be centralized primarily to one
 * place in order to provide a more consistent and simple experience elsewhere.
 *
 * Using These Options
 * It doesn't matter if you're using a target-specific compiler and a simulator
 * or a native compiler. In either case, you've got a couple choices for
 * configuring these options:
 *
 *  1. Because these options are specified via C defines, you can pass most of
 *     these options to your compiler through command line compiler flags. Even
 *     if you're using an embedded target that forces you to use their
 *     overbearing IDE for all configuration, there will be a place somewhere in
 *     your project to configure defines for your compiler.
 *  2. You can create a custom `unity_config.h` configuration file (present in
 *     your toolchain's search paths). In this file, you will list definitions
 *     and macros specific to your target. All you must do is define
 *     `UNITY_INCLUDE_CONFIG_H` and Unity will rely on `unity_config.h` for any
 *     further definitions it may need.
 */


#ifndef UNITY_CONFIG_H
#define UNITY_CONFIG_H


/* ************************* AUTOMATIC INTEGER TYPES ***************************
 * C's concept of an integer varies from target to target. The C Standard has
 * rules about the `int` matching the register size of the target
 * microprocessor. It has rules about the `int` and how its size relates to
 * other integer types. An `int` on one target might be 16 bits while on another
 * target it might be 64. There are more specific types in compilers compliant
 * with C99 or later, but that's certainly not every compiler you are likely to
 * encounter. Therefore, Unity has a number of features for helping to adjust
 * itself to match your required integer sizes. It starts off by trying to do it
 * automatically.
 **************************************************************************** */


/* The first attempt to guess your types is to check `limits.h`. Some compilers
 * that don't support `stdint.h` could include `limits.h`. If you don't
 * want Unity to check this file, define this to make it skip the inclusion.
 * Unity looks at UINT_MAX & ULONG_MAX, which were available since C89.
 */
 #define UNITY_EXCLUDE_LIMITS_H 


/* The second thing that Unity does to guess your types is check `stdint.h`.
 * This file defines `UINTPTR_MAX`, since C99, that Unity can make use of to
 * learn about your system. It's possible you don't want it to do this or it's
 * possible that your system doesn't support `stdint.h`. If that's the case,
 * you're going to want to define this. That way, Unity will know to skip the
 * inclusion of this file and you won't be left with a compiler error.
 */
/* #define UNITY_EXCLUDE_STDINT_H */


/* ********************** MANUAL INTEGER TYPE DEFINITION ***********************
 * If you've disabled all of the automatic options above, you're going to have
 * to do the configuration yourself. There are just a handful of defines that
 * you are going to specify if you don't like the defaults.
 **************************************************************************** */


 /* Define this to be the number of bits an `int` takes up on your system. The
 * default, if not auto-detected, is 32 bits.
 *
 * Example:
 */
/* #define UNITY_INT_WIDTH 16 */


/* Define this to be the number of bits a `long` takes up on your system. The
 * default, if not autodetected, is 32 bits. This is used to figure out what
 * kind of 64-bit support your system can handle.  Does it need to specify a
 * `long` or a `long long` to get a 64-bit value. On 16-bit systems, this option
 * is going to be ignored.
 *
 * Example:
 */
/* #define UNITY_LONG_WIDTH 16 */


/* Define this to be the number of bits a pointer takes up on your system. The
 * default, if not autodetected, is 32-bits. If you're getting ugly compiler
 * warnings about casting from pointers, this is the one to look at.
 *
 * Example:
 */
 #define UNITY_POINTER_WIDTH 64 


/* Unity will automatically include 64-bit support if it auto-detects it, or if
 * your `int`, `long`, or pointer widths are greater than 32-bits. Define this
 * to enable 64-bit support if none of the other options already did it for you.
 * There can be a significant size and speed impact to enabling 64-bit support
 * on small targets, so don't define it if you don't need it.
 */
/* #define UNITY_INCLUDE_64 */




/* *************************** FLOATING POINT TYPES ****************************
 * In the embedded world, it's not uncommon for targets to have no support for
 * floating point operations at all or to have support that is limited to only
 * single precision. We are able to guess integer sizes on the fly because
 * integers are always available in at least one size. Floating point, on the
 * other hand, is sometimes not available at all. Trying to include `float.h` on
 * these platforms would result in an error. This leaves manual configuration as
 * the only option.
 **************************************************************************** */


 /* By default, Unity guesses that you will want single precision floating point
  * support, but not double precision. It's easy to change either of these using
  * the include and exclude options here. You may include neither, just float,
  * or both, as suits your needs.
  */
 #define UNITY_EXCLUDE_FLOAT  
 #define UNITY_INCLUDE_DOUBLE 
/* #define UNITY_EXCLUDE_DOUBLE */


/* For features that are enabled, the following floating point options also
 * become available.
 */


/* Unity aims for as small of a footprint as possible and avoids most standard
 * library calls (some embedded platforms don't have a standard library!).
 * Because of this, its routines for printing integer values are minimalist and
 * hand-coded. To keep Unity universal, though, we eventually chose to develop
 * our own floating point print routines. Still, the display of floating point
 * values during a failure are optional. By default, Unity will print the
 * actual results of floating point assertion failures. So a failed assertion
 * will produce a message like "Expected 4.0 Was 4.25". If you would like less
 * verbose failure messages for floating point assertions, use this option to
 * give a failure message `"Values Not Within Delta"` and trim the binary size.
 */
/* #define UNITY_EXCLUDE_FLOAT_PRINT */


/* If enabled, Unity assumes you want your `FLOAT` asserts to compare standard C
 * floats. If your compiler supports a specialty floating point type, you can
 * always override this behavior by using this definition.
 *
 * Example:
 */
/* #define UNITY_FLOAT_TYPE float16_t */


/* If enabled, Unity assumes you want your `DOUBLE` asserts to compare standard
 * C doubles. If you would like to change this, you can specify something else
 * by using this option. For example, defining `UNITY_DOUBLE_TYPE` to `long
 * double` could enable gargantuan floating point types on your 64-bit processor
 * instead of the standard `double`.
 *
 * Example:
 */
/* #define UNITY_DOUBLE_TYPE long double */


/* If you look up `UNITY_ASSERT_EQUAL_FLOAT` and `UNITY_ASSERT_EQUAL_DOUBLE` as
 * documented in the Unity Assertion Guide, you will learn that they are not
 * really asserting that two values are equal but rather that two values are
 * "close enough" to equal. "Close enough" is controlled by these precision
 * configuration options. If you are working with 32-bit floats and/or 64-bit
 * doubles (the normal on most processors), you should have no need to change
 * these options. They are both set to give you approximately 1 significant bit
 * in either direction. The float precision is 0.00001 while the double is
 * 10^-12. For further details on how this works, see the appendix of the Unity
 * Assertion Guide.
 *
 * Example:
 */
/* #define UNITY_FLOAT_PRECISION 0.001f  */
/* #define UNITY_DOUBLE_PRECISION 0.001f */




/* *************************** MISCELLANEOUS ***********************************
 * Miscellaneous configuration options for Unity
 **************************************************************************** */


/* Unity uses the stddef.h header included in the C standard library for the
 * "NULL" macro. Define this in order to disable the include of stddef.h. If you
 * do this, you have to make sure to provide your own "NULL" definition.
 */
/* #define UNITY_EXCLUDE_STDDEF_H */


/* Define this to enable the unity formatted print macro:
 * "TEST_PRINTF"
 */
/* #define UNITY_INCLUDE_PRINT_FORMATTED */




/* *************************** TOOLSET CUSTOMIZATION ***************************
 * In addition to the options listed above, there are a number of other options
 * which will come in handy to customize Unity's behavior for your specific
 * toolchain. It is possible that you may not need to touch any of these but
 * certain platforms, particularly those running in simulators, may need to jump
 * through extra hoops to operate properly. These macros will help in those
 * situations.
 **************************************************************************** */


/* By default, Unity prints its results to `stdout` as it runs. This works
 * perfectly fine in most situations where you are using a native compiler for
 * testing. It works on some simulators as well so long as they have `stdout`
 * routed back to the command line. There are times, however, where the
 * simulator will lack support for dumping results or you will want to route
 * results elsewhere for other reasons. In these cases, you should define the
 * `UNITY_OUTPUT_CHAR` macro. This macro accepts a single character at a time
 * (as an `int`, since this is the parameter type of the standard C `putchar`
 * function most commonly used). You may replace this with whatever function
 * call you like.
 *
 * Example:
 * Say you are forced to run your test suite on an embedded processor with no
 * `stdout` option. You decide to route your test result output to a custom
 * serial `RS232_putc()` function you wrote like thus:
 */
/* #define UNITY_OUTPUT_CHAR(a)                    RS232_putc(a) */
/* #define UNITY_OUTPUT_CHAR_HEADER_DECLARATION    RS232_putc(int) */
/* #define UNITY_OUTPUT_FLUSH()                    RS232_flush() */
/* #define UNITY_OUTPUT_FLUSH_HEADER_DECLARATION   RS232_flush(void) */
/* #define UNITY_OUTPUT_START()                    RS232_config(115200,1,8,0) */
/* #define UNITY_OUTPUT_COMPLETE()                 RS232_close() */


/* Some compilers require a custom attribute to be assigned to pointers, like
 * `near` or `far`. In these cases, you can give Unity a safe default for these
 * by defining this option with the attribute you would like.
 *
 * Example:
 */
/* #define UNITY_PTR_ATTRIBUTE __attribute__((far)) */
/* #define UNITY_PTR_ATTRIBUTE near */


/* Print execution time of each test when executed in verbose mode
 *
 * Example:
 *
 * TEST - PASS (10 ms)
 */
/* #define UNITY_INCLUDE_EXEC_TIME */


#endif /* UNITY_CONFIG_H */

test_unity_code.c中的內(nèi)容:

#include "unity.h"
#include "unity_internals.h"


#include 


void setUp(void)
{
}

void tearDown(void)
{
}

/*
    閏年判斷函數(shù)
  閏年:能被4整除同時(shí)不能被100整除,或者能被400整除。
*/
int IsLeapYear(int year)
{
    uint8_t flag = 0;
    if(((year % 100!=0) && (year % 4==0)) || ( year % 400==0) )
    {
        flag = 1;
    }
    return flag;
}

void leapYear(void)
{
    TEST_ASSERT_TRUE(IsLeapYear(2020));
    TEST_ASSERT_TRUE(IsLeapYear(2000));
}

void commonYear(void)
{
    TEST_ASSERT_FALSE(IsLeapYear(1999));
    TEST_ASSERT_FALSE(IsLeapYear(2100));
}

// 被測函數(shù)
int add(int a, int b) {
  return a + b;
}


// 測試函數(shù)
void test_add(void) {
  TEST_ASSERT_EQUAL(4, add(2, 2));
  TEST_ASSERT_EQUAL(0, add(0, 0));
  TEST_ASSERT_EQUAL(0, add(-1, 1));
}


// 被測函數(shù)
void led_on(uint8_t *gpio_state) {
  // 設(shè)置GPIO引腳為低電平,點(diǎn)亮LED燈
   *gpio_state = 0;
}


void led_off(uint8_t *gpio_state) {
  // 設(shè)置GPIO引腳為高電平,熄滅LED燈
  *gpio_state = 1;
}


// 測試函數(shù)
void test_led_off(void) {
  // 模擬GPIO引腳的狀態(tài)
  uint8_t gpio_state = 0;


  // 調(diào)用被測函數(shù)之前,檢查GPIO引腳為低電平
  TEST_ASSERT_EQUAL(0, gpio_state);


  // 調(diào)用被測函數(shù),并傳入一個(gè)指針參數(shù),用于修改GPIO引腳的狀態(tài)
  led_off(&gpio_state);


  // 調(diào)用被測函數(shù)之后,檢查GPIO引腳為高電平
  TEST_ASSERT_EQUAL(1, gpio_state);
}


void test_led_on(void) {
  // 模擬GPIO引腳的狀態(tài)
  uint8_t gpio_state = 1;


   // 調(diào)用被測函數(shù)之前,檢查GPIO引腳為高電平
   TEST_ASSERT_EQUAL(1, gpio_state);


   // 調(diào)用被測函數(shù),并傳入一個(gè)指針參數(shù),用于修改GPIO引腳的狀態(tài)
   led_on(&gpio_state);


   // 調(diào)用被測函數(shù)之后,檢查GPIO引腳為低電平
   TEST_ASSERT_EQUAL(0, gpio_state);
}


// 被測函數(shù)
void reverse_string(char *str) {
  // 反轉(zhuǎn)一個(gè)字符串
  int len = strlen(str);
  for (int i = 0; i < len / 2; i++) {
    char temp = str[i];
    str[i] = str[len - i - 1];
    str[len - i - 1] = temp;
  }
}


// 測試函數(shù)
void test_reverse_string(void) {
  // 定義一個(gè)測試字符串
  char test_str[] = "Hello World";


   // 調(diào)用被測函數(shù)之前,檢查字符串內(nèi)容
   TEST_ASSERT_EQUAL_STRING("Hello World", test_str);


   // 調(diào)用被測函數(shù),并傳入字符串參數(shù)
   reverse_string(test_str);


   // 調(diào)用被測函數(shù)之后,檢查字符串內(nèi)容是否反轉(zhuǎn)
   TEST_ASSERT_EQUAL_STRING("dlroW olleH", test_str);
}


void test_unity(void)
{
//  UnityPrint("heihei\\r\\n");
//  UnityPrint("\\r\\n************\\r\\n");


    // 初始化測試注冊表
    UNITY_BEGIN();


    // 運(yùn)行測試函數(shù)
    RUN_TEST(test_add);
    RUN_TEST(leapYear);
    RUN_TEST(commonYear);
    RUN_TEST(test_led_on);
    RUN_TEST(test_led_off);
    RUN_TEST(test_reverse_string);


    UNITY_END();
}

實(shí)驗(yàn)現(xiàn)象

編譯工程:下載進(jìn)工程,可以在串口助手界面觀察到相關(guān)日志。

圖片

可以在工程中跑一下官方的demo,觀察一下實(shí)驗(yàn)現(xiàn)象,本文完!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • STM32
    +關(guān)注

    關(guān)注

    2264

    文章

    10854

    瀏覽量

    354293
  • C語言
    +關(guān)注

    關(guān)注

    180

    文章

    7594

    瀏覽量

    135857
  • 串口
    +關(guān)注

    關(guān)注

    14

    文章

    1540

    瀏覽量

    76059
  • keil
    +關(guān)注

    關(guān)注

    68

    文章

    1210

    瀏覽量

    166578
  • Unity
    +關(guān)注

    關(guān)注

    1

    文章

    127

    瀏覽量

    21753
收藏 人收藏

    評論

    相關(guān)推薦

    Cisco Unity Express語音郵件

    Cisco CallManager Express解決方案的重要組件。Cisco CallManager環(huán)境中,Cisco Unity Express為分支機(jī)構(gòu)提供了語音郵件的本地存儲(chǔ)和處理功能
    發(fā)表于 11-13 21:50

    allegro16.3為什么沒有l(wèi)oad unity menu

    allegro16.3可以登錄到Cadence Menu,可是登錄以後為什么不能再轉(zhuǎn)為unity menu,圖2中就沒有“Load unity menu”這一項(xiàng),另外我已經(jīng)安裝完了最新Uni
    發(fā)表于 06-20 10:22

    unity基礎(chǔ)開發(fā):高通AR Unity虛擬按鈕

    ;wwwww"); } } #endregion // PUBLIC_METHODS}添加到這個(gè)物體ImageTarget,添加注意 virtual Button Behaviour 這個(gè)腳本的name就是vb.VirtualButtonName=="button"
    發(fā)表于 09-20 11:55

    高通AR Unity播放器特性

    范圍內(nèi)會(huì)引起檢測與跟蹤,就你Android和ios設(shè)備一樣。一旦AR目標(biāo)被檢測到,你會(huì)看到在你的增強(qiáng)被渲染到場景中。注意事項(xiàng)● Vuforia播放模式僅在Unity Pro版本下起作用,回插件加載
    發(fā)表于 09-20 11:56

    Unity3D淺談&Unity5游戲及交互設(shè)計(jì)

    Unity3D是由丹麥Unity公司開發(fā)的游戲開發(fā)工具,作為一款跨平臺的游戲開發(fā)工具,從一開始就被設(shè)計(jì)成易于使用的產(chǎn)品。支持包括IOS,ANDROID,PC,WEB,PS3.XBOX等多個(gè)平臺的發(fā)布
    發(fā)表于 07-02 06:25

    分享個(gè)Unity電視遙控器按鈕事件控制源碼

    展示 `上下左右鍵`。一、如何消除電視的全屏提示彈窗在做unity手機(jī)游戲適配成電視游戲時(shí),出現(xiàn)一個(gè)問題,電視打開unity打包出的a
    發(fā)表于 01-03 07:44

    STM32CubeMX添加功能代碼加入Unity單元測試工程

    文章目錄前言STM32CubeMX添加功能代碼加入Unity單元測試工程鏈接微信公眾號前言昨天被師兄問起程序單元測試的問題, 頓時(shí)一臉懵逼, 啥? 單元測試. 折騰了一天, 用Unity好歹擼出來一
    發(fā)表于 01-10 08:10

    Unity關(guān)鍵項(xiàng)目范圍設(shè)置指南

    烘焙到燈光貼圖中或投影紋理,而不是投射陰影。 在你開始之前,本指南最后一次更新是針對Unity 2019.3。 本指南涉及通用渲染管道(URP)。Unity的早期版本中,這被稱為輕量級渲染管道。 創(chuàng)建新項(xiàng)目時(shí),請選擇URP模板
    發(fā)表于 08-02 13:25

    Unity和UE的優(yōu)勢及缺點(diǎn)分析

    Unity優(yōu)點(diǎn) 手游的第一選擇,網(wǎng)站上有很多的教程和文檔(特別對于入門級開發(fā)者); 使用C#和Java編碼(C++可以特定領(lǐng)域使用,但并不推薦); 比較友好,可用插件較多,開發(fā)效率高; 簡易且直觀
    發(fā)表于 09-26 11:13 ?0次下載

    Unity中的Enlighten與混合光照

    Unity的5.6版本之前的5.x中,主要使用了Geomerics公司的Enlighten【1】來提供實(shí)時(shí)全局照明以及烘焙全局照明,5.6之后Unity引入了新的Lightmapp
    發(fā)表于 05-31 05:28 ?2157次閱讀

    怎樣安裝Unity

    適用于以后。本文結(jié)束時(shí),您將安裝Unity并準(zhǔn)備好在Unity環(huán)境中工作。您還將學(xué)習(xí)如何使用預(yù)建資產(chǎn)在下一篇文章中構(gòu)建基本的VR應(yīng)用程序。
    的頭像 發(fā)表于 08-01 14:12 ?3015次閱讀

    Unity宣布與Snap達(dá)成合作;《紐約時(shí)報(bào)》宣布與Facebook合作Instagram推出AR填字游戲

    Unity宣布與Snap達(dá)成合作;《紐約時(shí)報(bào)》宣布與Facebook合作Instagram推出AR填字游戲 Unity宣布與Snap達(dá)成合作,以擴(kuò)展廣告客戶群體并將Snap技術(shù)帶給
    的頭像 發(fā)表于 12-24 17:59 ?3306次閱讀

    STM32移植的mx wifi源代碼

    STM32移植的mx_wifi源代碼,可方便移植到其他的STM32單片機(jī)上。
    發(fā)表于 09-26 16:35 ?2次下載

    Unity與ROS鏈接介紹

    對于ROS而言,其最常用的就是Topic話題以及Service兩個(gè)了。之前我們了解Unity Robotics Hub時(shí)候就了解到基本的Unity和ROS的通訊,下面我們來詳細(xì)介紹一下Uni
    的頭像 發(fā)表于 11-17 17:22 ?919次閱讀
    <b class='flag-5'>Unity</b>與ROS鏈接介紹

    如何將消息導(dǎo)入Unity

    自定義msg 將消息導(dǎo)入Unity的步驟如下所示: 1.Unity的菜單“Robotics→Generate ROS Messages…”選擇。 2.“ROS message path”中選
    的頭像 發(fā)表于 11-17 17:26 ?483次閱讀
    如何將消息導(dǎo)入<b class='flag-5'>Unity</b>