作為電子系統(tǒng)中必不可少的部分,電源模塊極最常見,同時(shí)也是極考驗(yàn)硬件工程師功力的部分之一。電源模塊是電子系統(tǒng)中對(duì)電能實(shí)現(xiàn)轉(zhuǎn)換、分配、控制和監(jiān)測等功能的子系統(tǒng),整個(gè)電子系統(tǒng)的功耗、性能、成本和體積都與電源模塊設(shè)計(jì)直接相關(guān)?,F(xiàn)代大型電子系統(tǒng)正在向高集成、高速、高增益、高可靠性方向發(fā)展,電源上的微小干擾都會(huì)對(duì)電子設(shè)備性能產(chǎn)生影響,這就需要設(shè)計(jì)出低噪聲、抗紋波能力強(qiáng)的電源模塊;而在便攜式設(shè)備中,電池供電情況越來越多,這就對(duì)續(xù)航時(shí)間提出了高要求,這通常對(duì)應(yīng)著其電源模塊高效、高可靠和低靜態(tài)電流的極致要求。
總之,電源模塊設(shè)計(jì)是電子系統(tǒng)性能發(fā)揮的基礎(chǔ),只有做好系統(tǒng)的電源模塊設(shè)計(jì)之后,才有機(jī)會(huì)去追求性能和穩(wěn)健地實(shí)現(xiàn)系統(tǒng)的所有功能。而電源模塊設(shè)計(jì)極為重要的就是如何選合適的芯片和技術(shù)方案。通常,根據(jù)電源模塊中各個(gè)支路的情況,確定輸入和輸出電壓差,然后根據(jù)應(yīng)用需求,在效率指標(biāo)、散熱限制、噪聲要求、系統(tǒng)復(fù)雜性和成本等多個(gè)條件約束下,就能選出最合適的電源芯片,然后根據(jù)選定的電源芯片來實(shí)現(xiàn)相應(yīng)的電源轉(zhuǎn)換與分配的功能。
根據(jù)應(yīng)用場景,電源模塊可以分為交流到直流 (AC-DC) 轉(zhuǎn)換電源模塊和直流到直流 (DC-DC) 轉(zhuǎn)換電源模塊,其中AC-DC電源模塊通常用于直接用市電的設(shè)備,而DC-DC電源模塊則只能接入直流電源,然后在直流電源輸入的基礎(chǔ)上去分壓或升壓,為系統(tǒng)各模塊供應(yīng)所需的電壓和電流。
而根據(jù)工作原理上,電源芯片可分為線性電源芯片和開關(guān)電源芯片。線性電源也被稱為低壓差線性穩(wěn)壓器 (Low Drop Out Regulator,簡稱LDO) 芯片,其原理是通過晶體管壓降來調(diào)節(jié)輸出電壓,只能實(shí)現(xiàn)降壓輸出,無法實(shí)現(xiàn)升壓輸出,與開關(guān)電源芯片相比,LDO通常具有體積小、噪聲低、使用方便等特點(diǎn)。
開關(guān)電源芯片采用脈寬調(diào)制(PWM)方式工作,可實(shí)現(xiàn)升降壓輸出,而且效率高、功耗低,但由于采用PWM方式工作,所以會(huì)產(chǎn)生電磁干擾 (EMI) ,因而通常噪聲也比相對(duì)應(yīng)的LDO要大。
按實(shí)現(xiàn)方法,開關(guān)電源可分為兩類,即電感式DC-DC電源芯片與基于開關(guān)電容的DC-DC變換器 (即電荷泵式DC-DC芯片) 。電荷泵式DC-DC芯片采用電容作為開關(guān)和儲(chǔ)能元件,與電感式DC-DC電源芯片相比,具有效率高、體積小、靜態(tài)電流低、輸出電壓調(diào)節(jié)范圍寬、Vmin低、噪聲低和EMI低等優(yōu)點(diǎn),而且電容比電感更易于集成,因而電荷泵式電源芯片可以實(shí)現(xiàn)更高集成度。在小功率應(yīng)用中,電荷泵式DC-DC開關(guān)電源芯片具有很大優(yōu)勢,但電荷泵式電源芯片不適合高電壓、大功率場景,因而在高功率應(yīng)用中,電感式DC-DC電源芯片還居于主導(dǎo)地位。
在有高性能處理器、大型FPGA等大芯片的復(fù)雜系統(tǒng)中,由于電流消耗可達(dá)數(shù)安培到幾十安培,通常需要組合使用開關(guān)電源和LDO。復(fù)雜系統(tǒng)中易受干擾的模擬電路,通常由LDO芯片來供電;且數(shù)字部分因?yàn)殡娏鞔笠蚨鴮?duì)效率要求高,而數(shù)字電路本身抗干擾性更強(qiáng),因此更適合用開關(guān)電源來供電。開關(guān)電源、LDO和各種保護(hù)器件與被動(dòng)元件的組合,構(gòu)建起了復(fù)雜系統(tǒng)的電源分布式體系。
總之,LDO和開關(guān)電源是所有電子設(shè)備中電源模塊的核心,電子系統(tǒng)發(fā)展也對(duì)電源芯片提出了更高要求,研發(fā)人員不斷嘗試更新的制造工藝、封裝技術(shù)與電路拓?fù)?,以達(dá)到更極致的性能或體積、成本等其他指標(biāo)。下面我們就從電源芯片的發(fā)展趨勢來看一看該如何選擇合適的電源芯片。
更小靜態(tài)電流——實(shí)現(xiàn)更低損耗
手機(jī)(含智能手機(jī)和功能機(jī))每年出貨量近20億部,筆記本電腦每年出貨量過億臺(tái),而隨著物聯(lián)網(wǎng)技術(shù)發(fā)展,越來越多的電池供電設(shè)備接入網(wǎng)絡(luò),這些設(shè)備典型工作狀態(tài)為短暫激活,相對(duì)較長時(shí)間休眠,通常需要在不更換電池的情況下,工作一整年,甚至三到五年。此類應(yīng)用對(duì)電源芯片提出極高要求,既要有極低的靜態(tài)電流,以保持輕載或無負(fù)載時(shí)的電源效率,滿足設(shè)備對(duì)電池供電長續(xù)航時(shí)間的要求,又得滿足重負(fù)載情況下系統(tǒng)對(duì)供電能力的要求,要做好并不容易。
貿(mào)澤電子在售的來自制造商Analog Devices (ADI) 的LT3009,就是一款可以同時(shí)滿足微安 (uA) 級(jí)靜態(tài)工作電流與20毫安 (mA) 大驅(qū)動(dòng)能力的LDO芯片。具體來看,LT3009無負(fù)載靜態(tài)電流為3uA,可以在280mV壓差 (輸入/輸出) 情況下提供20mA輸出電流,輸入電壓范圍為1.6V至20V,輸出電壓范圍為0.6V至19.5V。此外,LT3009僅需要1uF的電容就可以保證輸出電源的穩(wěn)定性和瞬時(shí)響應(yīng),內(nèi)部集成了限流、限溫、電池接反保護(hù)和反向電流保護(hù)等防護(hù)功能,可有效保證便攜設(shè)備的用電安全。
圖1:LT3009壓降與靜態(tài)電流關(guān)系 (圖源:ADI)
總體來看,LT3009非常適合既需要超低待機(jī)功耗,又能支持中等強(qiáng)度驅(qū)動(dòng)能力的應(yīng)用場景,除了常見的手持設(shè)備,還可用于氣表、水表和門禁等應(yīng)用。LT3009在節(jié)能方面尤其出色,負(fù)載增加時(shí),接地腳的電流永遠(yuǎn)不超過輸出電流的5%,而在關(guān)機(jī)時(shí),靜態(tài)電流低于1uA。
更低EMI
降低EMI (電磁干擾) 主要針對(duì)開關(guān)電源芯片 (Switch Regulator) 。開關(guān)電源芯片由于工作在脈寬調(diào)制狀態(tài),開關(guān)頻率多為幾百KHz到數(shù)MHz,甚至更高,因而開關(guān)電源本身是干擾源。如果開關(guān)電源電路在實(shí)現(xiàn)時(shí)參數(shù)設(shè)置不理想,將會(huì)加重其發(fā)出的電磁干擾,有時(shí)候設(shè)備電磁兼容性測試通不過,可能就因?yàn)殚_關(guān)電源部分沒處理好。
在設(shè)備電路板上降低EMI的方法主要有加屏蔽或加濾波 (電路可改造) ,降低開關(guān)波形上升斜率,如果芯片具備展頻功能則還可以打開展頻功能,以及修改PCB走線。總體上板級(jí)優(yōu)化EMI的方法都有代價(jià),例如增加成本或者影響電源性能。最好的解決方法,是開關(guān)電源芯片本身充分考慮了板級(jí)實(shí)現(xiàn)時(shí)的電磁干擾問題,在芯片級(jí)將EMI問題解決掉,成本低,系統(tǒng)性能也不會(huì)受到影響。
ADI的Silent Switcher技術(shù),即在芯片級(jí)大幅改善了開關(guān)電源的EMI表現(xiàn),從而可以在不影響電源性能的前提下有效地降低EMI,而且不增加外部元器件,是一種簡單高效的低成本解決方法。
圖3:傳統(tǒng)電流回路拓?fù)?(左) 與Silent Switcher拓?fù)?(右) (圖源:ADI)
在原理上,ADI的Silent Switcher技術(shù)將形成兩個(gè)對(duì)稱分布的電流回路,這兩個(gè)回路產(chǎn)生的磁場方向相反,因而能量相互抵消,從而模塊電氣回路對(duì)外沒有凈磁場。所以,Silent Switcher技術(shù)無須降低晶體管開關(guān)速度,解決了EMI和效率之間的互斥問題。
此外,Silent Switcher技術(shù)采用銅柱倒裝封裝工藝,可以大幅降低芯片管腳寄生阻抗,因此不僅可以減小EMI,還可以提升開關(guān)電源的效率。
圖5:傳統(tǒng)封裝 (左) 與銅柱倒裝封裝 (右) 對(duì)比 (圖源:ADI)
如今,Silent Switcher已經(jīng)發(fā)展到了第二代,例如LT8650S即采用第二代Silent Switcher技術(shù),與第一代Silent Switcher相比,將兩個(gè)外部匹配電容集成到芯片內(nèi)部,即減少了外部元件,又同時(shí)可縮小回路面積,降低EMI,改善了對(duì)PCB的適應(yīng)性,硬件工程師在采用LT8650S設(shè)計(jì)電路時(shí)自由度更高。
圖6:Silent Switcher 1需要外部回路電容 (左) Silent Switcher 2將回路電容集成到芯片內(nèi)部,設(shè)計(jì)更簡單 (右) (圖源:ADI)
從實(shí)測結(jié)果來看,采用一代Silent Switcher技術(shù)的LT8614與傳統(tǒng)LDO LT8610在同等條件下的波形對(duì)比,LT8614比LT8610改善約20dB,而集成二代Silent Switcher技術(shù)的LT8650,EMI性能還要好。
更低噪聲、更高精度
除了EMI,在醫(yī)療電子、精密儀器設(shè)備、高精度電源與通信基礎(chǔ)設(shè)施等應(yīng)用中,對(duì)于電源芯片本身噪聲和電源紋波抑制比 (PSRR) 要求也非常高,因?yàn)樵谶@些應(yīng)用中,通常有易敏感電路模塊,例如ADC、DAC電路、精密放大器、高頻振蕩器、時(shí)鐘和PLL等,如果電源不干凈,這些易敏感電路的性能會(huì)大受影響,由于敏感電路對(duì)于噪聲要求高,所以通常該模塊只能由抑制噪聲更出色的LDO芯片來供電。隨著市場應(yīng)用的變化,敏感精密電路技術(shù)持續(xù)發(fā)展,不斷推動(dòng)精密LDO電源芯片在更低噪聲、更高精度方向更進(jìn)一步。
LDO的噪聲來自兩部分,內(nèi)部噪聲及外部噪聲。內(nèi)部噪聲主要有熱噪聲和1/f噪聲,這兩種噪聲與LDO設(shè)計(jì)和半導(dǎo)體工藝相關(guān)。外部噪聲有很多來源,常見的是LDO輸入電源(通常是由開關(guān)電源芯片輸出來供電)的噪聲。由于LDO具有高增益,可以確保良好的線路和負(fù)載調(diào)整性能,因此它能夠衰減來自輸入電源的噪聲和紋波,這就是LDO的電源紋波抑制比,由于LDO帶寬有限,因此其PSRR隨著頻率提高而降低。LDO帶寬之外的噪聲無法通過LDO本身進(jìn)行衰減,需要利用無源濾波器來降低。
貿(mào)澤電子在售的來自ADI的LT3042就是一款超低噪聲、超高PSRR架構(gòu),適用于敏感電路應(yīng)用的LDO芯片。LT3042在10Hz至100kHz的RMS噪聲僅為0.8uV(RMS值),10kHz時(shí)點(diǎn)噪聲僅為2nV/Hz,在1MHz時(shí)PSRR還有79dB。下圖8為LT3042的典型應(yīng)用電路和PSRR參數(shù)。
圖8:LT3042的典型應(yīng)用電路 (左) 和PSRR參數(shù) (右) (圖源:ADI)
LT3042在0至15V的寬輸出電壓范圍內(nèi),可提供幾乎恒定的內(nèi)部噪聲、PSRR、帶寬和負(fù)載調(diào)整率,這些參數(shù)與輸出電壓無關(guān),非常適合作為高精度電流基準(zhǔn),并可以通過級(jí)聯(lián)來進(jìn)一步降低噪聲。
更好的隔離
前面說的都是小功率應(yīng)用,在大功率應(yīng)用中,同樣少不了電源芯片。而大功率應(yīng)用相比小功率應(yīng)用有附加的要求,即隔離。隔離的功能是切斷電子系統(tǒng)中的大電流、高電壓模塊與小電流、低電壓模塊之間的直接回路,通過耦合的方式來傳遞控制信號(hào),以實(shí)現(xiàn)對(duì)操作人員及低壓電路模塊的保護(hù),并減少高壓大電流模塊對(duì)低壓電路部分的干擾。
光耦隔離是較傳統(tǒng)的隔離方法,但光耦隔離方案存在不少弊端,例如易老化、速度慢和功耗高等。但在數(shù)字隔離技術(shù)出現(xiàn)之前,光耦是極為合適的隔離方案。在1990年代末期,數(shù)字隔離技術(shù)開始產(chǎn)業(yè)化,由于其在尺寸、速度、功耗、易用性和可靠性方面具有光耦合器所無法比擬的巨大優(yōu)勢,因而一推出就廣受市場好評(píng)。
其中ADI是數(shù)字隔離技術(shù)的領(lǐng)導(dǎo)廠商之一,憑借其iCoupler數(shù)字隔離芯片和uModule BGA數(shù)字隔離技術(shù),已經(jīng)出貨超過30億個(gè)隔離通道。貿(mào)澤電子在售的ADUM6421A就是一款集成了四個(gè)iCoupler開關(guān)鍵控 (OOK) 數(shù)字隔離通道和iCoupler芯片級(jí)isoPower變壓器技術(shù)的DC/DC開關(guān)電源芯片,利用ADI的技術(shù),可支持在500mW隔離電源中實(shí)現(xiàn)小尺寸集成式、增強(qiáng)隔離信號(hào)和電源解決方案。
ADUM6421A共模瞬態(tài)抗擾度(CMTI)可達(dá)100kV/μs,滿足增強(qiáng)隔離要求,而且對(duì)EMI做了優(yōu)化,在2層PCB上滿載時(shí)符合CISPR 32/EN550 32 B級(jí)發(fā)射限制。
小型化
小型化是當(dāng)前電源模塊技術(shù)發(fā)展的主要方向之一,小型化可以減少占用PCB面積,減少設(shè)備重量,方便設(shè)備集成更多功能,電源芯片或模塊小型化對(duì)于硬件工程師而言意義重大。但小型化意味著高功率密度,即同樣體積提供更多功率輸出,這就要求電源芯片具備更高的轉(zhuǎn)換效率與更好的散熱性能。
研發(fā)人員通過應(yīng)用四個(gè)方向的技術(shù)來滿足電源小型化需求。首先,采用更好的半導(dǎo)體工藝來降低芯片本身散發(fā)出來的熱量;其次,采用創(chuàng)新線路拓?fù)渑c結(jié)構(gòu),以降低對(duì)外部無源器件的要求,從而用小尺寸無源器件也能滿足系統(tǒng)要求;第三,創(chuàng)新的封裝技術(shù)以增強(qiáng)電源芯片散熱能力;最后,通過異質(zhì)集成來減少寄生參數(shù)和芯片尺寸。
ADI在這幾個(gè)方向都有很突出的表現(xiàn)。一個(gè)典型案例是對(duì)低壓大電流FPGA芯片供電方案的改進(jìn)。在2010年,對(duì)需要100A電流的FPGA,ADI需要12片LTM4601;到2012年,4片LTM4620并聯(lián),就可以輸出100A電流;2014年推出的LTM4630則只需要3片并聯(lián),即可輸出100A電流;2016年推出的LTM4650僅需2片,就能滿足百安電流供電。但這還不是重點(diǎn),如今ADI已經(jīng)推出的LTM4700實(shí)現(xiàn)了單片供電100A。
LTM系列進(jìn)化史,在封裝技術(shù)上的演進(jìn)就特別明顯,從普通塑料封裝,到加入金屬散熱襯底,再到發(fā)展出自己的元件封裝 (Component on Package,簡稱CoP) 。CoP這是一種立體封裝技術(shù),該技術(shù)將大功率電源芯片外配的電感通過封裝技術(shù)放置于芯片上方,將其作為散熱器裸露于氣流中,這樣既不占用PCB面積,又提升了散熱性能,從而可以提高功率密度。
總結(jié)
電子設(shè)備日新月異,推動(dòng)電源技術(shù)不斷發(fā)展,電子設(shè)備對(duì)安全節(jié)能、便攜易用與性能等的共性要求,反饋到電源芯片上,就需要芯片研發(fā)人員開發(fā)出更高效能、更低功耗、更智能化的綠色電源芯片,以實(shí)現(xiàn)更高功率密度、更長電池壽命、更低EMI干擾、更優(yōu)電源和信號(hào)完整性以及高壓下的安全性等目標(biāo),推動(dòng)著電源芯片研發(fā)人員持續(xù)創(chuàng)新。反過來,電源芯片技術(shù)的不斷創(chuàng)新,也給電子設(shè)備研發(fā)人員更多激勵(lì)和資源,給了工程師做電源設(shè)計(jì)時(shí)更多選擇,從而可以把這些新技術(shù)應(yīng)用到極致。
審核編輯:郭婷
-
電源
+關(guān)注
關(guān)注
184文章
17495瀏覽量
249211 -
芯片
+關(guān)注
關(guān)注
453文章
50254瀏覽量
421126 -
PCB
+關(guān)注
關(guān)注
1文章
1775瀏覽量
13204
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論