0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

瞬態(tài)熱阻抗準(zhǔn)確計(jì)算IGBT模塊結(jié)殼熱阻的方法

金鑒實(shí)驗(yàn)室 ? 2023-04-04 10:14 ? 次閱讀

隨著半導(dǎo)體技術(shù)的迅速發(fā)展以及絕緣柵雙極型晶體管(insulated gate bipolar translatorIGBT)模塊的普遍應(yīng)用,電力電子可靠性要求不斷提高,而過(guò)熱失效這一主要失效原因亦成為IGBT器件研制的障礙。為解決這一瓶頸問(wèn)題,近年來(lái),國(guó)內(nèi)外專(zhuān)家學(xué)者們也將關(guān)注的焦點(diǎn)放在了IGBT模塊的熱失效分析方面。熱阻這一表征半導(dǎo)體器件熱傳導(dǎo)的參量也成了熱失效問(wèn)題中的一個(gè)熱點(diǎn)。

IGBT熱阻的測(cè)試及計(jì)算方法常見(jiàn)的有以下幾種,包括熱傳導(dǎo)法、熱敏參數(shù)法、物理接觸法、紅外熱成像法、等效熱網(wǎng)絡(luò)模型法等。

熱傳導(dǎo)法以IGBT定義式為基礎(chǔ)進(jìn)行熱阻計(jì)算。這種方法具有用直接基于尺寸參數(shù)和材料熱特性解算模塊結(jié)殼熱阻和能清楚地反映出模塊內(nèi)各層構(gòu)造熱阻值等優(yōu)點(diǎn),其不足之處在于模塊內(nèi)各層導(dǎo)熱材料厚度與有效導(dǎo)熱面積近似,且忽略各層材料熱導(dǎo)率隨著溫度和退化程度的變化。

熱敏參數(shù)法首先得到溫敏參數(shù),由溫敏參數(shù)求得IGBT的結(jié)溫,再根據(jù)IGBT熱阻的計(jì)算式求得其熱阻。該方法優(yōu)點(diǎn)是不易對(duì)器件造成破壞;缺點(diǎn)是引入了較多的測(cè)量誤差,殼溫最大值點(diǎn)難以確定,并且該方法需要在IGBT模塊達(dá)到熱穩(wěn)態(tài)時(shí)才能進(jìn)行求解。對(duì)此也有很多文獻(xiàn)對(duì)該方法進(jìn)行改進(jìn)。

物理接觸法主要有利用熱電偶和光纖探頭直接測(cè)量結(jié)溫或者殼溫的。這種方法具有可直接求出測(cè)量點(diǎn)在任意時(shí)間內(nèi)的溫度等優(yōu)點(diǎn);其不足之處在于一方面損壞了器件,而且所產(chǎn)生的損傷還影響了溫度分布,而另一方面測(cè)量點(diǎn)又不一定是溫度最大值的點(diǎn),這些都會(huì)產(chǎn)生誤差。

紅外熱成像法就是利用紅外熱成像系統(tǒng)測(cè)溫的方法。它具有測(cè)量精度高、探測(cè)速度快等優(yōu)點(diǎn);不足之處在于費(fèi)用較高。等效熱網(wǎng)絡(luò)模型法采用計(jì)算機(jī)軟件編程擬合IGBT模塊瞬態(tài)熱阻抗曲線獲得其RC熱網(wǎng)絡(luò)模型繼而獲得熱阻。這種方法的好處在于計(jì)算速度很快;缺點(diǎn)在于隨IGBT模塊不斷劣化,熱網(wǎng)絡(luò)模型中阻容參數(shù)需不斷修改且工作煩瑣。

根據(jù)以上分析可知,傳統(tǒng)的熱阻計(jì)算方法在準(zhǔn)確性、測(cè)量周期或是成本上都有著些許缺陷,因此,本文根據(jù)瞬態(tài)熱阻抗計(jì)算式提出了一種可以在工況條件下快速、準(zhǔn)確計(jì)算IGBT模塊結(jié)殼熱阻的方法。

IGBT模塊快速計(jì)算法原理

JESD51—14中定義,在t=0時(shí)刻給半導(dǎo)體器件施加1個(gè)恒定的熱功率,那么t時(shí)刻的瞬態(tài)熱阻抗可通過(guò)下式計(jì)算:

d169d180-cd4c-11ed-ad0d-dac502259ad0.png

式中:

TJ(t):為t時(shí)刻的芯片結(jié)溫;

TJ(t=0):為t=0時(shí)刻的芯片結(jié)溫;

PH:為施加的熱功率。

電熱比擬理論認(rèn)為熱阻這一材料本身屬性是恒定的。但熱和電也有本質(zhì)區(qū)別,電傳得很快,也就是電場(chǎng)傳得很快,熱傳得比較慢,有遲滯現(xiàn)象。所以以IGBT模塊為例,熱量從芯片上產(chǎn)生、往下轉(zhuǎn)移的過(guò)程當(dāng)中,t1時(shí)刻,熱量的前端剛剛轉(zhuǎn)移至襯底層(DBC)下表面,則熱量流過(guò)物料的熱阻就是結(jié)在DBC下表面上的熱阻,根據(jù)式(1)求得的ZθJC(t1)即結(jié)到DBC底面的熱阻;當(dāng)t2時(shí)刻熱量前端傳遞到銅基板底面時(shí),那么熱量所流經(jīng)的熱阻則為模塊結(jié)殼熱阻,根據(jù)式(1)求得的ZθJC(t2)即結(jié)殼熱阻。所以通過(guò)研究熱量前端傳遞到銅基板底面的時(shí)間節(jié)點(diǎn)及該時(shí)刻的模塊結(jié)溫大小,根據(jù)熱量的流經(jīng)熱阻,由式(1)就可求得模塊的結(jié)殼熱阻。

為研究熱量向銅基板底面?zhèn)鬟f的時(shí)間節(jié)點(diǎn),對(duì)某一恒功率載荷作用下IGBT模塊結(jié)殼溫度0.02s之前的變化曲線進(jìn)行了模擬研究,結(jié)果如圖1。

d17d1308-cd4c-11ed-ad0d-dac502259ad0.png

由圖1可知,在t0時(shí)刻施加恒功率載荷后,芯片溫度迅速上升,在0.02s時(shí)刻升高了0.85℃,而殼的溫度升高出現(xiàn)遲滯性,在0.014s才有較為明顯的升高,且溫度變化速率要小于結(jié)溫變化速率,在0.02s時(shí)殼溫升高了0.003℃左右。為了準(zhǔn)確研究模塊熱能傳遞過(guò)程,對(duì)圖1中的殼溫變化曲線進(jìn)行局部放大,如圖2所示。

d198614e-cd4c-11ed-ad0d-dac502259ad0.png

由圖2可知,殼溫在0.003s前不發(fā)生變化,也就是說(shuō)當(dāng)t=0.003s時(shí),由芯片吸收的熱量剛好傳遞到IGBT模塊基板底面。

為了便于觀察,只對(duì)模塊中1組IGBT芯片的剖切面進(jìn)行仿真,得出IGBT在0.003s時(shí)的瞬態(tài)縱向分布,如圖3所示。

d1bb8b7e-cd4c-11ed-ad0d-dac502259ad0.png

如圖3所示,熱流從IGBT芯片到銅基板底面是沿著箭頭方向流動(dòng)?;诖四M可知0.003s下熱流正好到達(dá)銅基板的底側(cè),這也驗(yàn)證了我們遲滯性理論的正確性。

通過(guò)圖1~圖3可知,熱量從芯片傳遞到銅基板底面的時(shí)間為0.003s,由于IGBT模塊芯片到銅基板底面的垂直距離為4.75mm,所以可以求得熱量在IGBT模塊中的平均傳播速度為1.58m/s,遠(yuǎn)低于電子在金屬導(dǎo)體中的傳播速度,因此熱量的傳遞與電能傳遞相比具有遲滯性。

IGBT快速計(jì)算模型建立

根據(jù)對(duì)式(1)的分析可知,當(dāng)tp時(shí)刻熱量恰好傳遞至模塊銅基板底面時(shí),由式(1)所計(jì)算的瞬態(tài)熱阻ZθJC(tp)是模塊熱量所流經(jīng)的熱阻和,即為模塊的結(jié)殼熱阻。

從圖1中可以看出,模塊芯片向銅基板底面?zhèn)鳠崴钑r(shí)間為10-3s量級(jí),很短,所以利用這種方法可以迅速地計(jì)算出模塊結(jié)殼時(shí)的熱阻,不需要等IGBT模塊達(dá)到穩(wěn)態(tài)傳熱模式后再測(cè)量。故工況條件采用本方法可得到IGBT模塊開(kāi)機(jī)瞬間結(jié)殼熱阻。因?yàn)槟K在工作前各點(diǎn)溫度與環(huán)境溫度相同,所以模塊結(jié)殼熱阻的計(jì)算方法如下式所示:

d1e04eb4-cd4c-11ed-ad0d-dac502259ad0.png

其中,tp滿(mǎn)足:

d1fe2556-cd4c-11ed-ad0d-dac502259ad0.png

式中:

Ta:為環(huán)境溫度;

Tc(t):為t時(shí)刻模塊的殼溫;

Tp:為模塊殼溫剛開(kāi)始升高的時(shí)間點(diǎn)。

從上述研究來(lái)看,模擬可以簡(jiǎn)便地捕捉殼溫開(kāi)始上升的時(shí)間點(diǎn)和相應(yīng)時(shí)刻結(jié)溫。但是在實(shí)際工況測(cè)量中,要得到這個(gè)時(shí)間節(jié)點(diǎn)就必須同時(shí)對(duì)模塊結(jié)殼溫度進(jìn)行監(jiān)測(cè),并根據(jù)模塊變化曲線對(duì)曲線方程進(jìn)行擬合,找出ΔTc恰好不是零時(shí)的tp值。但是建立數(shù)學(xué)模型、以及求導(dǎo)分析過(guò)程煩瑣,而且在底殼溫度測(cè)量點(diǎn)的選擇上存在隨機(jī)性,從而造成結(jié)殼熱阻結(jié)果存在誤差。

為了可以準(zhǔn)確獲取tp時(shí)刻的結(jié)溫TJ (tp),需要對(duì)IGBT模塊的傳熱過(guò)程進(jìn)一步分析。當(dāng)給IGBT模塊施加一恒定功率時(shí),熱量由芯片的PN結(jié)產(chǎn)生并垂直向下傳遞,當(dāng)器件的殼溫沒(méi)有發(fā)生變化之前,通過(guò)式(1)求得的瞬態(tài)熱阻大小不受模塊外部散熱條件的影響,只與模塊內(nèi)部散熱性能有關(guān)。因此,對(duì)于散熱條件不同的IGBT模塊,由于在此時(shí)間段,熱量的傳遞路徑完全一致,所以模塊的結(jié)溫變化曲線也完全一致。久而久之,因IGBT模塊銅基板底部溫度上升,熱對(duì)流將熱量散到環(huán)境中去,這時(shí)由式(1)得到的瞬態(tài)熱阻較大時(shí),會(huì)受到模塊外散熱的影響。針對(duì)散熱條件的差異,該時(shí)刻之后IGBT模塊熱量傳遞路徑發(fā)生了變化,結(jié)溫曲線發(fā)生了分離。兩種不同散熱系數(shù)IGBT模塊在加載同一熱載荷下結(jié)溫變化曲線如圖4。

d212bf84-cd4c-11ed-ad0d-dac502259ad0.png

由圖4分析知,在tp時(shí)刻,熱量剛好由芯片傳遞至模塊銅基板底面;在tp時(shí)刻之前兩模塊熱量傳遞路徑及條件完全一致,所以對(duì)于不同散熱系數(shù)的IGBT模塊結(jié)溫在此時(shí)間段變化曲線一致;當(dāng)tp時(shí)刻之后,熱從銅基板底面開(kāi)始散失到周?chē)h(huán)境中,這兩個(gè)模塊因使用對(duì)流系數(shù)不同而改變了熱傳遞條件,結(jié)溫升高速率亦隨之變化:對(duì)流系數(shù)越高的模塊結(jié)溫變化率越低,而對(duì)流系數(shù)越低則結(jié)溫變化率越高。

IGBT模塊快速計(jì)算仿真研究

為驗(yàn)證所提方法的準(zhǔn)確性,采用有限元仿真進(jìn)行了實(shí)例求解和計(jì)算。為了能夠同時(shí)對(duì)模塊熱阻進(jìn)行快速地計(jì)算,模擬中在同一個(gè)工作平臺(tái)上建立了兩個(gè)完全吻合的IGBT模塊三維模型并且對(duì)其設(shè)定了不同對(duì)流系數(shù)來(lái)替代實(shí)際測(cè)量中相繼兩次的測(cè)量。具體解題流程如下。

1.在同一工作平臺(tái)建立2個(gè)完全一致的IGBT模塊3維模型,并進(jìn)行完全相同的網(wǎng)絡(luò)劃分,如圖5所示。

d23368b0-cd4c-11ed-ad0d-dac502259ad0.png

2.銅基板底面的對(duì)流系數(shù)分別設(shè)為50和100,仿真不同散熱條件的模塊傳熱特性。

3.給2個(gè)模塊的IGBT芯片均施加功率為50W的熱載荷。

4.通過(guò)仿真獲得IGBT模塊的結(jié)溫變化曲線如圖6所示

d26034ee-cd4c-11ed-ad0d-dac502259ad0.png

由圖6可知,在t=0.0014s時(shí),2條結(jié)溫曲線發(fā)生分離,分離時(shí)的結(jié)溫大小為T(mén)J(0.0014)=33.3℃。

5.經(jīng)過(guò)仿真可知,TJ(0.0014)=33.3℃,Ta=25℃,P=50W,根據(jù)式(2),求得IGBT模塊的結(jié)殼熱阻RJC=0.166℃/W。

為驗(yàn)證所提方法的準(zhǔn)確性,采用有限元仿真進(jìn)行了實(shí)例求解和計(jì)算。為了能夠同時(shí)對(duì)模塊熱阻進(jìn)行快速地計(jì)算,模擬中在同一個(gè)工作平臺(tái)上建立了兩個(gè)完全吻合的IGBT模塊三維模型并且對(duì)其設(shè)定了不同對(duì)流系數(shù)來(lái)替代實(shí)際測(cè)量中相繼兩次的測(cè)量。具體解題流程如下。

解算出結(jié)殼熱阻達(dá)到0.166°C·W-1。對(duì)比上述結(jié)果證明IGBT模塊快速計(jì)算法是可行和正確的。

IGBT模塊快速計(jì)算試驗(yàn)研究

1、快速計(jì)算工況條件實(shí)現(xiàn)方法

根據(jù)以上分析,在實(shí)際工況條件下使用該模型計(jì)算IGBT模塊結(jié)殼熱阻的實(shí)現(xiàn)方法為:

在同一坐標(biāo)系下繪制不同散熱條件下IGBT模塊的結(jié)溫變化曲線,2條曲線的分離點(diǎn)對(duì)應(yīng)的時(shí)刻即為殼溫剛開(kāi)始升高的時(shí)間點(diǎn)tp, 此時(shí)對(duì)應(yīng)的結(jié)溫大小即為T(mén)J(tp)。這樣就可以根據(jù)式(2)直接計(jì)算模塊的結(jié)殼熱阻。

在工況條件下通過(guò)該方法計(jì)算模塊結(jié)殼熱阻的具體步驟如下:

1.使IGBT模塊在環(huán)境溫度Ta下達(dá)到熱穩(wěn)態(tài),即模塊各節(jié)點(diǎn)溫度均為T(mén)a,沒(méi)有熱傳遞發(fā)生;

2.給IGBT模塊施加一恒定功率P,采集其結(jié)溫變化曲線;

3.改變IGBT模塊散熱條件例如:組裝散熱器后改變銅基板和散熱器間導(dǎo)熱硅脂的厚度、未組裝散熱器后施加或者改變風(fēng)冷后空氣的速度等。再施加恒定功率P并收集其結(jié)溫變化曲線;

4.尋找2次采集的結(jié)溫變化曲線分離點(diǎn)對(duì)應(yīng)的結(jié)溫大小TJ (tp);

5.根據(jù)式(2)計(jì)算模塊的結(jié)殼熱阻。為了使得測(cè)試過(guò)程更加快捷方便,可以提前測(cè)量不同條件下結(jié)溫的變化曲線,形成數(shù)據(jù)庫(kù)。

這樣,實(shí)際操作時(shí)只需測(cè)量1次結(jié)溫變化曲線,再與數(shù)據(jù)庫(kù)中同條件結(jié)溫曲線進(jìn)行比對(duì)即可。

2、快速計(jì)算實(shí)驗(yàn)條件實(shí)現(xiàn)方法

通過(guò)嵌入光纖傳感器可實(shí)現(xiàn)對(duì)芯片結(jié)溫的精確測(cè)量,而無(wú)需改變模塊本身的傳熱特性,本部分將基于分離點(diǎn)求取結(jié)殼熱阻,并在實(shí)驗(yàn)室工況下對(duì)模塊結(jié)殼熱阻進(jìn)行了測(cè)量。

根據(jù)制定的在工況條件下實(shí)驗(yàn)該方法的具體步驟,設(shè)計(jì)實(shí)驗(yàn)條件下結(jié)殼熱阻測(cè)試的實(shí)現(xiàn)方法。

1.環(huán)境溫度設(shè)置。為了更好地模擬工況條件,實(shí)驗(yàn)過(guò)程直接在實(shí)驗(yàn)室環(huán)境中進(jìn)行,同時(shí)記錄測(cè)試時(shí)刻環(huán)境溫度的大小。

2.施加恒定功率。對(duì)IGBT模塊加恒定電流30A,因發(fā)生結(jié)溫分離點(diǎn)時(shí)刻約為數(shù)ms,故對(duì)模塊柵極加+15V脈沖信號(hào),作用時(shí)間1s。經(jīng)過(guò)實(shí)測(cè)和推算,這時(shí)產(chǎn)熱功率達(dá)到了52.6W。

3.設(shè)置不同散熱系數(shù)。由于2次測(cè)量需要給模塊設(shè)置不同的散熱系數(shù),所以實(shí)驗(yàn)過(guò)程中,第1次測(cè)量時(shí),不做任何散熱處理,第2次測(cè)量時(shí)給模塊進(jìn)行風(fēng)冷。

4.結(jié)溫采樣。利用溫度信號(hào)解調(diào)器能夠?qū)饫w探頭收集到的光信號(hào)進(jìn)行處理并發(fā)送至PC機(jī),PC機(jī)能夠?qū)ζ溥M(jìn)行曲線擬合和其他處理。在實(shí)驗(yàn)中,結(jié)溫采樣頻率由計(jì)算機(jī)設(shè)定為9600Hz,也就是說(shuō)溫度值每s可采集9600個(gè),每0.1ms取樣一次。實(shí)測(cè)IGBT模塊在加載過(guò)程中的環(huán)境溫度Ta等于19.8°C。

3、 快速計(jì)算實(shí)驗(yàn)條件結(jié)果及分析

嚴(yán)格按照以上實(shí)驗(yàn)室條件進(jìn)行測(cè)試,2次實(shí)驗(yàn)采集的結(jié)溫點(diǎn)如圖7所示。

d3252f10-cd4c-11ed-ad0d-dac502259ad0.png

由圖7及采集點(diǎn)數(shù)據(jù)分析可知,2次測(cè)量結(jié)溫分離點(diǎn)時(shí)刻結(jié)溫為T(mén)J(tp)=28.6℃。根據(jù)實(shí)驗(yàn)條件可知,Ta=19.8℃,P=52.6W,根據(jù)式(2)求得模塊的結(jié)殼熱阻為RJC=0.1673℃/W。

經(jīng)比對(duì)試驗(yàn)計(jì)算結(jié)果表明:采用結(jié)溫分離點(diǎn)法進(jìn)行模塊結(jié)殼熱阻的計(jì)算具有更高的準(zhǔn)確度。同時(shí)實(shí)驗(yàn)過(guò)程所需要的時(shí)間較少,不需要等模塊達(dá)到熱穩(wěn)態(tài)就可以達(dá)到快速測(cè)量的目的。

通過(guò)分析試驗(yàn)過(guò)程,總結(jié)發(fā)現(xiàn)在工況條件下使用該方法也存在一些不足:

1.工況條件下的IGBT模塊都有封裝結(jié)構(gòu),無(wú)法直接測(cè)量芯片結(jié)溫;

2.該測(cè)試方法需要在不同對(duì)流系數(shù)下進(jìn)行2次測(cè)量,第1次結(jié)束后需等待IGBT模塊冷卻到環(huán)境溫度才可進(jìn)行下一次測(cè)量;

3.工況下IGBT模塊均用于組裝散熱器,拆下散熱器或者更改散熱器和銅底板之間導(dǎo)熱硅脂厚度時(shí)工作較為煩瑣且影響IGBT模塊正常運(yùn)行。

通過(guò)本文的分析可知,該IGBT模塊結(jié)殼溫度快速計(jì)算法具有以下優(yōu)點(diǎn):

1.無(wú)需測(cè)量模塊的殼溫,消除了測(cè)量IGBT 殼溫時(shí)因選取節(jié)點(diǎn)的隨機(jī)性而引入的計(jì)算誤差;

2.測(cè)量誤差較??;IGBT模塊芯片各部分溫度分布相差不大,因此測(cè)量點(diǎn)選擇的隨機(jī)性在計(jì)算熱阻時(shí)幾乎沒(méi)有影響,環(huán)境溫度及所加恒定功率均能在工況條件下測(cè)得精確;

3.測(cè)量周期短,由于熱量由模塊芯片向銅基板底面轉(zhuǎn)移的時(shí)間為10-3s量級(jí),所以對(duì)IGBT模塊恒功率P施加所需的時(shí)間很短,收集一條結(jié)溫變化曲線只需幾個(gè)s即可完成。

結(jié)論

該文為尋求一種熱阻快速計(jì)算新方法,給出一種通過(guò)得到不同散熱情況下結(jié)溫變化曲線上分離點(diǎn)的IGBT模塊結(jié)殼熱阻解算方法。設(shè)計(jì)了一種在工況條件下用此方法解決IGBT模塊結(jié)殼熱阻問(wèn)題的實(shí)施方法及具體試驗(yàn)步驟,最后給出了仿真分析和試驗(yàn)分析的結(jié)果,采用這種方法都能迅速,精確地得到IGBT模塊結(jié)殼熱阻。

總結(jié)知該方法具有計(jì)算誤差小、測(cè)量周期短的優(yōu)點(diǎn),可以實(shí)現(xiàn)準(zhǔn)確、快速測(cè)量模塊結(jié)殼熱阻的要求。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • IGBT
    +關(guān)注

    關(guān)注

    1256

    文章

    3711

    瀏覽量

    246958
  • 熱阻
    +關(guān)注

    關(guān)注

    1

    文章

    103

    瀏覽量

    16366
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    關(guān)于OPA564疑問(wèn)求解

    上圖是OPA564規(guī)格書(shū)中的參數(shù): 問(wèn)題: 1)如果使用DWP封裝,按照參考的PCB銅皮散熱設(shè)計(jì),是否總的就是為83W/°C(33+50); 2)如果使用DWD封裝,自己選
    發(fā)表于 09-05 07:07

    在設(shè)計(jì)中使用MOSFET瞬態(tài)阻抗曲線

    電子發(fā)燒友網(wǎng)站提供《在設(shè)計(jì)中使用MOSFET瞬態(tài)阻抗曲線.pdf》資料免費(fèi)下載
    發(fā)表于 08-28 09:21 ?15次下載
    在設(shè)計(jì)中使用MOSFET<b class='flag-5'>瞬態(tài)</b><b class='flag-5'>熱</b><b class='flag-5'>阻抗</b>曲線

    THS4271的Rjb是多大啊,怎么計(jì)算?

    THS4271的Rjb是多大啊,怎么計(jì)算?
    發(fā)表于 07-30 07:11

    T3Ster瞬態(tài)測(cè)試方法與內(nèi)容揭秘

    5月28號(hào),貝思科爾舉辦了《芯片封裝測(cè)試:T3Ster瞬態(tài)測(cè)試方法與內(nèi)容揭秘》線上直播活動(dòng)。在本次直播活動(dòng)中,貝思科爾的劉烈生作為主講嘉賓,向大家介紹了關(guān)于如何利用T3Ster系統(tǒng)
    的頭像 發(fā)表于 06-01 08:35 ?1001次閱讀
    T3Ster<b class='flag-5'>瞬態(tài)</b><b class='flag-5'>熱</b>測(cè)試<b class='flag-5'>方法</b>與內(nèi)容揭秘

    降低PCB的設(shè)計(jì)方法有哪些

    在電子設(shè)備的設(shè)計(jì)過(guò)程中,降低PCB(印制電路板)的至關(guān)重要,以確保電子組件能在安全的溫度范圍內(nèi)可靠運(yùn)行。以下是幾種設(shè)計(jì)策略,旨在減少PCB的并提高其散熱性能: 1. 選用高熱導(dǎo)
    的頭像 發(fā)表于 05-02 15:58 ?2599次閱讀

    pcb的測(cè)量方法有哪些

    PCB的測(cè)量是評(píng)估印制電路板散熱性能的關(guān)鍵步驟。準(zhǔn)確地了解和測(cè)定PCB的有助于設(shè)計(jì)更高效的散熱方案,確保電子組件在安全的溫度范圍內(nèi)運(yùn)
    的頭像 發(fā)表于 05-02 15:44 ?2824次閱讀

    什么是PCB 因素有哪些

    PCB,全稱(chēng)為印制電路板,是衡量印制電路板散熱性能的一個(gè)重要參數(shù)。它是指印制電路板上的發(fā)熱元件(如電子器件)與環(huán)境之間的阻值,用于
    的頭像 發(fā)表于 05-02 15:34 ?2626次閱讀

    和散熱的基礎(chǔ)知識(shí)

    。 的符號(hào)為Rth和θ。Rth來(lái)源于的英文表達(dá)“thermal resistance”。 單位是℃/W(K/W)。 歐姆定律 可以
    的頭像 發(fā)表于 04-23 08:38 ?580次閱讀
    <b class='flag-5'>熱</b><b class='flag-5'>阻</b>和散熱的基礎(chǔ)知識(shí)

    MOS管測(cè)試失效分析

    MOS管瞬態(tài)測(cè)試(DVDS)失效品分析如何判斷是封裝原因還是芯片原因,有什么好的建議和思路
    發(fā)表于 03-12 11:46

    是什么意思 符號(hào)

    。具體來(lái)說(shuō),是單位熱量在通過(guò)特定材料或系統(tǒng)時(shí),所產(chǎn)生的溫度差的量度。 是一個(gè)衡量熱量在兩點(diǎn)之間傳遞能力的參數(shù),它通過(guò)計(jì)算兩點(diǎn)之間的溫
    的頭像 發(fā)表于 02-06 13:44 ?2848次閱讀
    <b class='flag-5'>熱</b><b class='flag-5'>阻</b>是什么意思 <b class='flag-5'>熱</b><b class='flag-5'>阻</b>符號(hào)

    粘接層空洞對(duì)功率芯片的影響

    ,對(duì)器件通電狀態(tài)下的溫度場(chǎng)進(jìn)行計(jì)算,討論空洞對(duì)于的影響。有限元仿真結(jié)果表明,隨著芯片粘接層空洞越大,器件隨之增大,在低空洞率下,
    的頭像 發(fā)表于 02-02 16:02 ?378次閱讀
    粘接層空洞對(duì)功率芯片<b class='flag-5'>熱</b><b class='flag-5'>阻</b>的影響

    影響pcb基本的因素有哪些

    PCB(印刷電路板)的基本是指阻礙熱量從發(fā)熱元件傳遞到周?chē)h(huán)境的能力。越低,散熱效果越好。在設(shè)計(jì)和制造PCB時(shí),了解和優(yōu)化
    的頭像 發(fā)表于 01-31 16:43 ?833次閱讀

    Boost變換器中SiC與IGBT模塊損耗對(duì)比研究

    摘 要:針對(duì)Boost變換器中SiC(碳化硅)與IGBT模塊損耗問(wèn)題,給出了Boost電路中功率模塊損耗的估算
    的頭像 發(fā)表于 12-14 09:37 ?1373次閱讀
    Boost變換器中SiC與<b class='flag-5'>IGBT</b><b class='flag-5'>模塊</b><b class='flag-5'>熱</b>損耗對(duì)比研究

    MPS | Driver IC 模型概述與計(jì)算

    有芯片最高溫度結(jié)溫TJ, 產(chǎn)生的熱量傳導(dǎo)至直接和die接觸的case top 和PCB board,之后再?gòu)腸ase top, PCB board 以熱交換,熱輻射形式傳播至空氣; 因此QFN對(duì)應(yīng)的
    的頭像 發(fā)表于 10-10 19:30 ?694次閱讀
    MPS | Driver IC <b class='flag-5'>熱</b><b class='flag-5'>阻</b>模型概述與<b class='flag-5'>計(jì)算</b>

    半導(dǎo)體器件為什么參數(shù)經(jīng)常被誤用?

    一些半導(dǎo)體器件集成了專(zhuān)用的二極管,根據(jù)校準(zhǔn)后的正向電壓與溫度曲線精確測(cè)量結(jié)溫。由于大多數(shù)器件沒(méi)有這種設(shè)計(jì),結(jié)溫的估計(jì)取決于外部參考點(diǎn)溫度和封裝的
    發(fā)表于 09-25 09:32 ?1024次閱讀
    半導(dǎo)體器件為什么<b class='flag-5'>熱</b><b class='flag-5'>阻</b>參數(shù)經(jīng)常被誤用?