0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

行業(yè)資訊 I 國際電子器件大會:背面配電是否可行?

深圳(耀創(chuàng))電子科技有限公司 ? 2023-04-20 10:06 ? 次閱讀

在去年 12 月的國際電子器件大會 (IEDM) 上,有一節(jié)關(guān)于背面電源分配網(wǎng)絡(luò)(Backside Power Delivery Networks)的簡短課程。主講人是IMEC(微電子研究中心)的 Gaspard Hiblot,標題為《Process Architectures Changes to Improve Power Delivery(通過改變流程架構(gòu)來改善電源分配)》;IMEC的高層人員Geert Hellings 和 Julien Ryckaert 也參與了內(nèi)容創(chuàng)作。該演講的幻燈片多達 80 頁,因此本文不做贅述,只介紹其中的一些重點。

設(shè)計技術(shù)協(xié)同優(yōu)化(DTCO)

現(xiàn)代工藝設(shè)計與設(shè)計將要使用的硅結(jié)構(gòu)的某些方面密切相關(guān)。這與十年前的情況截然不同,當時制程技術(shù)開發(fā)團隊基本上會交給設(shè)計團隊一套 SPICE 模型和 layout 設(shè)計規(guī)則。而我們采用的新方法稱為“設(shè)計技術(shù)協(xié)同優(yōu)化”,簡稱為 DTCO(Design Technology Co-Optimization)。

這個詞首次出現(xiàn)在 2016 年的 CDNLive (即Cadence用戶大會的舊稱,現(xiàn)稱為CadenceLIVE)Europe 會議上,當時 Luca Matti 展示了他在 IMEC 的工作——即將到來的 7nm 和 5nm 制程節(jié)點。在 DTCO 的早期發(fā)展階段,重點在于對半導體制程進行一些調(diào)整,如有源柵極觸點,旨在減少標準單元的軌道數(shù)量。

如今,簡單的維度縮放(即“摩爾定律”)已成為明日黃花,需要采用 DTCO 方法來保持縮放規(guī)律。其中一個巨大的挑戰(zhàn)是過孔的電阻。一直以來,我們使用銅材料來制造過孔,因為銅的電阻很低。但銅需要一個擴散阻擋層,如氮化鉭 (TaN),這會造成兩個問題——首先,阻擋層會占據(jù)空間,因此減少了過孔中銅的橫截面積;其次,阻擋層位于過孔底部,電流必須流過阻擋層。而阻擋層金屬的電阻高于銅,因此會增加過孔電阻。

銅線也有類似的問題,由于銅中的晶粒大小和銅線占據(jù)側(cè)壁的空間百分比增加,在 100nm 線寬以下,銅的電阻率開始增加。經(jīng)常有人提議用釕來解決這個問題,因為它不需要阻擋層,在尺寸極小時電阻率也很低。但據(jù)我所知,并沒有人用釕代替銅。在最低的過孔中,甚至是 M0 互連中,有些人會使用鈷。

d3efda2e-dd89-11ed-ad0d-dac502259ad0.png

這些與互連有關(guān)的問題會影響到信號時鐘和功耗。不過,信號布線和電源分配網(wǎng)絡(luò) (PDN) 所面臨的權(quán)衡取舍是不同的。電源需要低電阻,與電容關(guān)系不大(因為電壓不變)。與普通信號不同,電源分配網(wǎng)絡(luò)要傳輸大電流,這讓電遷移成為了一個難題。為此,通常會采用更復雜的制程工藝,來區(qū)分電源和信號布線。

背面配電

最終的區(qū)別在于將 PDN 與信號完全分開,在背面創(chuàng)建 PDN。PDN 位于減薄晶圓的背面,通過硅過孔 (TSV) 連接到晶體管和正面互連。

d40dcd22-dd89-11ed-ad0d-dac502259ad0.png

深入了解背面電源分配網(wǎng)絡(luò) (Backside power delivery networks,即 BS-PDN)——

獨特優(yōu)勢

將片上壓降減少了一個數(shù)量級

如下圖所示,約 300Ω 的過孔柱減少到僅為 5Ω 的 TSV,這也大大減少了片上壓降。

d4442dfe-dd89-11ed-ad0d-dac502259ad0.png

擴展了芯片面積

這在很大程度上取決于制程工藝的不同方面(如 TSV 周圍禁布區(qū)的尺寸),也取決于 EDA 工具。

如Cadence Innovus 一類工具中的布線器應(yīng)該可以更輕松地進行信號布線,PDN 不會在互連堆棧中造成阻礙。但具體的獲益有多大,還需要進行實驗。

d461cfa8-dd89-11ed-ad0d-dac502259ad0.png

如果使用埋入式電源軌 (BPR),可以減少標準單元中的軌道數(shù)量,因此可以將芯片面積擴展大約 15-20%。

d487c0e6-dd89-11ed-ad0d-dac502259ad0.png

降低 BEOL 中精細金屬的復雜性

銅經(jīng)常采用雙鑲嵌工藝,很難在同一層上混合寬金屬線(用于電源)和窄金屬線(用于信號)。

更易于實現(xiàn)晶圓對晶圓鍵合工藝,以便在邏輯上堆疊存儲器

倒裝 SRAM 裸片由邏輯裸片配電,因此可以有效地由相同的 BS-PDN 配電。

d49acd26-dd89-11ed-ad0d-dac502259ad0.png

三種基本方法

d4c3a106-dd89-11ed-ad0d-dac502259ad0.png

TSV-middle 電源位于有源旁邊,并在單元之間共享。BSM1(背面金屬 1)與有源對準。

埋入式電源軌 (BPR) 的電源埋在有源器件,VBPR 接入 BPR,BPR 充當 BSM1(因此,有一層“背面”配電網(wǎng)絡(luò)實際上移到了正面)。

背面接觸電源位于有源下方,過孔接入電源軌,BSM1 與柵極對準

這三種方法具有一些共同的挑戰(zhàn)——

01

背面配電需要將硅晶圓減薄至小于 10um。

在真正的晶圓被削磨之前,需要將另一個晶圓粘合到真正的晶圓上(用于提供機械支撐和便于操作),如下圖所示:

d4e6e5bc-dd89-11ed-ad0d-dac502259ad0.png

02

將正面和背面對準。

nano-TSV (nTSV) 需要在約 10nm 內(nèi)對準。

d5115bd0-dd89-11ed-ad0d-dac502259ad0.png

上圖是 TSV-middle 的高級流程;下圖是BPR(埋入式電源軌)的高級流程。

d530eeaa-dd89-11ed-ad0d-dac502259ad0.png

BPR 有兩種候選材料:鎢 (W) 和釕 (Ru)。鎢的污染風險較低,可達到 50Ω/um 的目標電阻;但是釕不需要使用阻擋層,過孔電阻較低。

d5640362-dd89-11ed-ad0d-dac502259ad0.png

在此本文不會過多討論背面接觸方法,因為它似乎離實用還有很長的路要走。Gaspard 對 BS-PDN 的總結(jié)如下:

超級緊湊(優(yōu)點)

有許多未解決的挑戰(zhàn)(缺點)

背面和正面對準

Rseries

補充 FEOL 縮放

改善壓降(優(yōu)點)

展望未來

演講的最后一部分對未來的技術(shù)發(fā)展進行了展望。

聽到“背面配電”,不由得讓人聯(lián)想是否可以再進一步,增強背面的功能,然后將一些系統(tǒng)功能也移到背面。首先是全局互聯(lián)(不需要在背面擺放器件)。但也有可能出現(xiàn)背面器件。


d58709b6-dd89-11ed-ad0d-dac502259ad0.png

另一點是在背面創(chuàng)建金屬-絕緣體-金屬電容器 MIMCAP。鑒于可能涉及較大的功率密度 (1w/mm2),MIMCAP 有助于減少動態(tài)壓降。

d5d97fd4-dd89-11ed-ad0d-dac502259ad0.png

顯而易見的是,背面配電技術(shù)將繼續(xù)完善,一如下方邏輯器件路線圖。

d60406fa-dd89-11ed-ad0d-dac502259ad0.png

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 器件
    +關(guān)注

    關(guān)注

    4

    文章

    294

    瀏覽量

    27717
  • Layou
    +關(guān)注

    關(guān)注

    0

    文章

    3

    瀏覽量

    6783
收藏 人收藏

    評論

    相關(guān)推薦

    功率電子器件控制電路的設(shè)計和功能

    在電力電子系統(tǒng)中,控制電路和電連接部件是確保系統(tǒng)精確、高效運行的關(guān)鍵要素。這些組件不僅負責實現(xiàn)對功率電子器件的精確控制,還確保了電能的有效傳輸和系統(tǒng)的安全可靠。為了深入理解這些組件的重要性,本文將
    的頭像 發(fā)表于 09-17 17:07 ?139次閱讀

    高功率電子器件的散熱方案

    高功率密度電力電子器件是電動汽車、風力發(fā)電機、高鐵、電網(wǎng)等應(yīng)用的核心部件。當前大功率電力電子器件正朝著高功率水平、高集成度的方向發(fā)展,因此散熱問題不可避免的受到關(guān)注。 一、新興散熱材料 金剛石增強
    的頭像 發(fā)表于 07-29 11:32 ?311次閱讀
    高功率<b class='flag-5'>電子器件</b>的散熱方案

    電壓驅(qū)動的電力電子器件的種類、工作原理及應(yīng)用領(lǐng)域

    電壓驅(qū)動的電力電子器件是一類重要的電力電子元件,它們在電力電子技術(shù)領(lǐng)域中發(fā)揮著關(guān)鍵作用。 一、電壓驅(qū)動的電力電子器件概述 1.1 電壓驅(qū)動器件
    的頭像 發(fā)表于 07-17 15:50 ?688次閱讀

    電流驅(qū)動型電子器件的基本概念、工作原理及分類

    電流驅(qū)動型電子器件是一種以電流作為輸入信號來控制電子器件的工作原理的電子元件。與電壓驅(qū)動型電子器件相比,電流驅(qū)動型電子器件具有更高的穩(wěn)定性、
    的頭像 發(fā)表于 07-17 15:46 ?560次閱讀

    電壓驅(qū)動型電力電子器件的優(yōu)點

    引言 電力電子器件是電力電子技術(shù)中的核心組成部分,其性能和可靠性直接影響到電力電子系統(tǒng)的整體性能。電壓驅(qū)動型電力電子器件作為一種重要的電力電子器件
    的頭像 發(fā)表于 07-17 15:23 ?640次閱讀

    電壓驅(qū)動的電力電子器件有哪些

    電壓驅(qū)動的電力電子器件是一類重要的電力電子元件,它們廣泛應(yīng)用于各種電力電子系統(tǒng)和設(shè)備中,如變頻器、逆變器、整流器、開關(guān)電源等。 電壓驅(qū)動的電力電子器件的基本概念 電壓驅(qū)動的電力
    的頭像 發(fā)表于 07-17 15:18 ?704次閱讀

    芯片電子器件焊點保護用什么膠水

    芯片電子器件焊點保護用什么膠水選擇用于保護芯片電子器件焊點的膠水時,需要考慮多種因素,包括膠水的固化速度、粘接強度、耐熱性、耐老化性、環(huán)保性以及是否與您的產(chǎn)品特性和操作要求相匹配。以下是一些常用
    的頭像 發(fā)表于 07-04 14:13 ?300次閱讀
    芯片<b class='flag-5'>電子器件</b>焊點保護用什么膠水

    電子器件散熱技術(shù)解析與應(yīng)用考慮因素

    隨著電子器件高頻、高速和集成電路技術(shù)的迅猛發(fā)展,電子器件的總功率密度急劇增加,而物理尺寸卻越來越小。由此帶來的高溫環(huán)境不可避免地對電子器件
    的頭像 發(fā)表于 05-20 08:10 ?449次閱讀
    <b class='flag-5'>電子器件</b>散熱技術(shù)解析與應(yīng)用考慮因素

    人體靜電對精密電子器件的傷害如何避免

    深圳比創(chuàng)達電子EMC|人體靜電對精密電子器件的傷害如何避免
    的頭像 發(fā)表于 04-22 14:33 ?334次閱讀
    人體靜電對精密<b class='flag-5'>電子器件</b>的傷害如何避免

    ic是什么電子器件 ic指的是哪些元器件

    集成電路(Integrated Circuit,簡稱IC)是指在一個芯片上集成了多個電子器件電子元件的電路。這些電子器件電子元件包括晶體管、電容器、電感器、二極管、三極管等等。通過
    的頭像 發(fā)表于 01-22 11:03 ?6480次閱讀

    GaN基單片電子器件的集成互補金屬氧化物半導體D模和E模高電子遷移率晶體管

    近日,第九屆國際第三代半導體論壇(IFWS)&第二十屆中國國際半導體照明論壇(SSLCHINA)于廈門召開。期間,“氮化鎵功率電子器件技術(shù)分論壇”上,臺灣元智大學前副校長、臺灣成功大學特聘
    的頭像 發(fā)表于 12-09 14:49 ?1474次閱讀
    GaN基單片<b class='flag-5'>電子器件</b>的集成互補金屬氧化物半導體D模和E模高<b class='flag-5'>電子</b>遷移率晶體管

    基于離子凝膠微針陣列的智能消防安全可穿戴電子器件

    離子凝膠為柔性電子器件提供了創(chuàng)新的應(yīng)用與未來前景,涵蓋可穿戴電子器件、軟機器人和智能系統(tǒng)等領(lǐng)域。
    的頭像 發(fā)表于 12-08 14:16 ?1040次閱讀
    基于離子凝膠微針陣列的智能消防安全可穿戴<b class='flag-5'>電子器件</b>

    全控型電力電子器件的RCD關(guān)斷緩沖電路的主要不足是什么?

    全控型電力電子器件的RCD關(guān)斷緩沖電路的主要不足是什么? 全控型電力電子器件的RCD關(guān)斷緩沖電路是一種常見的保護電路,用于保護電力電子器件免受過電流和過壓的損害。然而,這種保護電路也存在一些主要
    的頭像 發(fā)表于 11-21 15:17 ?447次閱讀

    電力電子器件大全及使用方法

    電子發(fā)燒友網(wǎng)站提供《電力電子器件大全及使用方法.pdf》資料免費下載
    發(fā)表于 11-18 14:46 ?2次下載
    電力<b class='flag-5'>電子器件</b>大全及使用方法

    大功率電力電子器件散熱研究綜述

    針對現(xiàn)階段制約電力電子技術(shù)發(fā)展的散熱問題,以溫度對電力電子器件的影響、電力電子設(shè)備熱設(shè)計特點、常見散熱技術(shù)、散熱系統(tǒng)優(yōu)化研究和新材料在電力電子散熱研究中的應(yīng)用這五方面為切入點,論述了大
    的頭像 發(fā)表于 11-07 09:37 ?1826次閱讀
    大功率電力<b class='flag-5'>電子器件</b>散熱研究綜述