0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

基于IM828-XCC的高速電機驅(qū)動器設計

英飛凌工業(yè)半導體 ? 2023-07-31 22:55 ? 次閱讀

隨著現(xiàn)代機床向高速、高精度方向發(fā)展,對機床主軸的技術要求越來越高。電主軸作為高速機床的重要組成部件之一,因其轉(zhuǎn)速高、體積小和優(yōu)異的動態(tài)性能等特性,可有效提高機床的動態(tài)平衡,避免了振動和噪聲。主軸電機放置在機床的主軸單元內(nèi),直接驅(qū)動負載。因此,簡化了傳統(tǒng)的機械驅(qū)動結構,實現(xiàn)了“零驅(qū)動”。由于電主軸的廣泛應用,推動著電機主軸系統(tǒng)向高精度、高速、低能耗、高效率、高可靠性的方向不斷發(fā)展,成為目前世界各國研究的熱點。

在現(xiàn)代電主軸、機軸一體化的趨勢下,要達到高速度和小型化的要求,會增大感應電機的銅耗,出現(xiàn)過熱、磨損嚴重的現(xiàn)象,導致電機性能不足。隨著永磁同步電機的發(fā)展,高速永磁同步電主軸應用愈加廣泛。高速永磁同步電主軸與傳統(tǒng)異步感應電機相比,由永磁體提供氣隙磁場,具有功率因數(shù)高、體積小、效率高等優(yōu)點,在高速磨削系統(tǒng)、高速離心空壓機等領域有著廣泛的應用和發(fā)展前景。

高速永磁同步電機(High-Speed Permanent Magnet Synchronous Motor , HSPMSM),通常指額定轉(zhuǎn)速超過10000r/min以上或者指困難系數(shù)(轉(zhuǎn)速與功率平方根的乘積)處于(1~10)×105r/min√kw范圍內(nèi)的電機,其控制性能決定著系統(tǒng)工作效率、運行穩(wěn)定性、壽命以及可靠性等方面,而控制特性也依賴于電路設計驅(qū)動器中的功率半導體性能,尤其SiC逆變技術的引入使得HSPMSM驅(qū)動器的性能有了長足的進步。

本文將介紹由西安理工大學電氣工程學院王建淵老師課題組搭建的一款基于IM828-XCC的高速電機驅(qū)動器,用于驅(qū)動一臺額定轉(zhuǎn)速15000r/min,額定功率2.2kW的高速主軸電機,以實現(xiàn)對高速電機的高性能控制,具有高功率密度、高效率和低熱耗散等特點。

49b46eda-2fb2-11ee-bbcf-dac502259ad0.png

本項目設計的高速永磁同步電機驅(qū)動控制系統(tǒng)需實現(xiàn)的主要功能有:實現(xiàn)電流和電壓等信號的采樣處理與控制;實現(xiàn)高速永磁同步電機無傳感器的轉(zhuǎn)速閉環(huán)控制;實現(xiàn)對電機運行狀態(tài)的速度、定子電流、電壓、功率器件工作溫度等相關數(shù)據(jù)的監(jiān)測,方便電機運行狀態(tài)的檢查與后期維護。

高速永磁同步電機驅(qū)動控制系統(tǒng)要求電機起動平穩(wěn)、速度穩(wěn)定和可調(diào)速范圍廣,根據(jù)高速永磁同步電機的主要參數(shù)來設計其驅(qū)動控制系統(tǒng)的技術指標要求如下:

1

驅(qū)動器最高輸出功率:4kW;

2

電機速度控制穩(wěn)態(tài)精度:±0.5%;

3

驅(qū)動器保護功能:具備過壓、過流、過熱等故障診斷及保護功能。

1

CIPOS Maxi IM828簡介

高速電機因其轉(zhuǎn)速高、基頻高的特點,對相應的驅(qū)動技術提出了更高要求,若開關頻率過低時,會導致驅(qū)動器輸出電壓波形質(zhì)量較差,隨著轉(zhuǎn)速升高,控制延遲及時間延遲也會隨之加大進而影響控制精度。本課題所設計搭建的高速電機驅(qū)動器選用英飛凌公司生產(chǎn)的IM828-XCC,其采用SiC MOSFET組成橋式單元,具有優(yōu)良導熱性能,適用于工業(yè)驅(qū)動、電機控制等工業(yè)應用。由于采用碳化硅技術,使其成為高速電機驅(qū)動領域的最佳選擇。

IM828-XCC具體分為以下幾個功能單元部分:

1

逆變部分:采用1200V CoolSiC Mosfet的三相逆變器與優(yōu)化的6通道SOI柵極驅(qū)動器相結合,具有優(yōu)異的電氣性能,采用CoolSiC的逆變單元,導通損耗小,開關特性優(yōu)異。

2

保護功能:過電流關閉,內(nèi)置NTC熱敏電阻用于溫度監(jiān)測,所有通道的欠壓鎖定,低側(cè)源引腳可用于所有相電流監(jiān)測,保護期間6個開關全部關閉。

3

其他功能:允許負VS電位高達-11V,用于VBS=15V的信號傳輸,集成自舉功能。

49ce55e8-2fb2-11ee-bbcf-dac502259ad0.png

圖1:IM828-XCC器件內(nèi)部框圖和器件圖片

2

驅(qū)動器設計

為了充分展示IM828的出色性能和優(yōu)秀特點,設計了一款4.0kW的驅(qū)動器,圖2所示為控制板部分,圖3所示為功率板部分。

49fe154e-2fb2-11ee-bbcf-dac502259ad0.png

圖2:控制部分主要器件位置

4adcb20e-2fb2-11ee-bbcf-dac502259ad0.png

圖3:驅(qū)動控制器功率部分主要器件位置

為了驗證驅(qū)動板的性能,測試了在不同工況下IPM的開關特性對電機運行的影響,通過三相調(diào)壓器對平臺供電,被控電機是意大利YSA公司研制的高速主軸電機,電機具體參數(shù)如表1所示。電機控制方式為有速度FOC,如圖4所示為IPM的W相橋臂開關管的dv/dt。

表1 高速電機參數(shù)

4bf5a6dc-2fb2-11ee-bbcf-dac502259ad0.png

實驗工況一

在空載運行條件下分別進行了fs為20kHz和fs為60kHz工況下的性能測試。

4c14772e-2fb2-11ee-bbcf-dac502259ad0.png

圖4:fs=20kHz IPM的

W相橋臂開關管關斷的dv/dt

根據(jù)測試波形可以得到關斷時上管的dv/dt為2809V/us,下管的dv/dt為3025V/us。同時也對IPM的導通與關斷延時進行了測試,測試結果如圖5所示,并對MCU到IPM的驅(qū)動信號延時進行測試,測試結果如圖6所示。

4c339c08-2fb2-11ee-bbcf-dac502259ad0.png

圖5:fs=20kHz IPM的導通與關斷延時

4c50a3c0-2fb2-11ee-bbcf-dac502259ad0.png

圖6:fs=20kHz CPU到IPM的驅(qū)動信號延時

同時,為了體現(xiàn)IPM_828-CXX在高開關頻率下的特性,在開關頻率為60kHz下也進行了相關波形采集,如圖7-9分別為在fs=60kHz下的W相橋臂開關管關斷時的dv/dt、IPM的導通與關斷延時、MCU到IPM的驅(qū)動信號延時。

4c9cc9da-2fb2-11ee-bbcf-dac502259ad0.png

圖7:fs=60kHz IPM的W相橋臂開關管關斷的dv/dt

4cfcf21a-2fb2-11ee-bbcf-dac502259ad0.png

圖8:fs=60kHz IPM的導通與關斷延時

4d572244-2fb2-11ee-bbcf-dac502259ad0.png

圖9:fs=60kHz CPU到IPM的驅(qū)動信號延時

實驗工況二

電機空載啟動,給定轉(zhuǎn)速1000r/min,穩(wěn)定運行時突加滿載TL=1.75N.m,開關頻率fs=30kHz,電機的相電流如下圖10所示,其中圖(a)為空載運行時的電流波形,圖(b)為滿載運行時的電流波形,可以看出電機在空載情況下運行時,輸出電流在0A附近波動;電機在滿載情況下運行時,輸出電流穩(wěn)定,實驗結果也驗證了本課題所設計搭建的實驗平臺具有良好的驅(qū)動性能。

4d7bba1e-2fb2-11ee-bbcf-dac502259ad0.png

(a)空載時電流波形圖

4d945fe2-2fb2-11ee-bbcf-dac502259ad0.png

(b)滿載時電流波形

圖10:電機突變載情況下的電流波形

此時IPM中W相橋臂的dv/dt波形如下:

4dbcc284-2fb2-11ee-bbcf-dac502259ad0.png

(a)MOS管關斷時dv/dt

4deeacd6-2fb2-11ee-bbcf-dac502259ad0.png

(b)MOS管開通時dv/dt

圖11:W相橋臂上管的關斷與開通時的dv/dt

4e0eeef6-2fb2-11ee-bbcf-dac502259ad0.png

(a)MOS管關斷時dv/dt

4e2c8dda-2fb2-11ee-bbcf-dac502259ad0.png

(b)MOS管開通時dv/dt

圖12:W相橋臂下管的關斷與開通時的dv/dt

表2 滿載時IPM內(nèi)部W相橋臂MOS管的dv/dt

4e51d4b4-2fb2-11ee-bbcf-dac502259ad0.png

當電機系統(tǒng)穩(wěn)定運行15分鐘,在環(huán)境溫度為21℃的條件下,用手持的溫度測試儀測得芯片附近的溫度為40.6℃。

4e7a2dba-2fb2-11ee-bbcf-dac502259ad0.png

3

系統(tǒng)設計要點及經(jīng)驗分享

1

硬件驅(qū)動保護調(diào)理

4f77bae8-2fb2-11ee-bbcf-dac502259ad0.png

圖10:硬件驅(qū)動保護調(diào)理電路圖

硬件驅(qū)動保護調(diào)理電路具有以下保護功能:

MCU復位;

母線過壓;

母線過流;

IPM復位信號(VDD欠壓、ITRIP過流);

Enable_PWM。

故障時,PWM-/EN引腳輸出為高電平,74LVX4245停止輸出;正常時引腳輸出為低電平。

2

散熱器設計

高速電機驅(qū)動控制器尺寸較小,功率較大,如何將熱量快速散去也是整體設計的難點之一,根據(jù)圖11所示得設計原理,考慮到IPM_IM828-XCC的位置,需要在IPM以及整流橋各加裝墊塊,IPM墊塊是為了保證IPM和散熱器之間的爬電間距和安全距離。

4fa311e8-2fb2-11ee-bbcf-dac502259ad0.png

圖11:散熱器設計

3

熱保護設計

在驅(qū)動控制器溫度過高,超過了設定值,會起到保護作用。

4fce042a-2fb2-11ee-bbcf-dac502259ad0.png

圖12:熱保護設計原理圖

上圖所示的溫度檢測電路,其基本原理是利用NTC熱敏電阻(5KΩ,精度)的阻值變化特性,連接到PNP管構成1mA的恒流源電路中,即可檢測熱敏電阻上的壓降變化,經(jīng)過電壓跟隨器與RC電路輸入到MCU,通過軟件實現(xiàn)過溫保護。

在本文所提及的熱保護設計方案中,考慮到熱敏電阻安裝部位與芯片之間存在傳導熱損失,故設置過溫保護點為90℃,此時根據(jù)NTC熱敏電阻阻值變化特性表,此時阻值為,MCU側(cè)的輸入電壓為0.6V左右,通過DAC模塊讀取電壓之后經(jīng)過軟件程序的比較,輸出保護信號,進而封鎖驅(qū)動信號,保護器件。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英飛凌
    +關注

    關注

    66

    文章

    2100

    瀏覽量

    137840
  • 驅(qū)動器
    +關注

    關注

    51

    文章

    8016

    瀏覽量

    145085
  • 電機
    +關注

    關注

    141

    文章

    8788

    瀏覽量

    143893
  • 電機驅(qū)動

    關注

    60

    文章

    1168

    瀏覽量

    86309
  • 高速
    +關注

    關注

    0

    文章

    113

    瀏覽量

    23113
  • 機床
    +關注

    關注

    1

    文章

    550

    瀏覽量

    30124
收藏 人收藏

    評論

    相關推薦

    高速保護驅(qū)動器/線路驅(qū)動器電路

    電子發(fā)燒友網(wǎng)為大家提供了高速保護驅(qū)動器/線路驅(qū)動器電路,本站還有其他相關資源,希望對您有所幫助!
    發(fā)表于 11-03 18:00 ?1501次閱讀

    七特步進電機驅(qū)動器型號

    ?? 七特步進電機驅(qū)動器是一種將電脈沖轉(zhuǎn)化為角位移的執(zhí)行機構。當步進驅(qū)動器接收到一個脈沖信號,它就驅(qū)動步進電機按設定的方向轉(zhuǎn)動一個固定的角度
    發(fā)表于 11-21 15:32 ?1824次閱讀

    步進電機驅(qū)動器工作模式_步進電機驅(qū)動器電路圖

    在整步運行中,同一種步進電機既可配整/半步驅(qū)動器也可配細分驅(qū)動器,但運行效果不同。步進電機驅(qū)動器按脈沖/方向指令對兩相步進
    的頭像 發(fā)表于 10-01 15:08 ?8720次閱讀
    步進<b class='flag-5'>電機</b><b class='flag-5'>驅(qū)動器</b>工作模式_步進<b class='flag-5'>電機</b><b class='flag-5'>驅(qū)動器</b>電路圖

    步進電機驅(qū)動器調(diào)速方法_步進電機驅(qū)動器的作用

    本文主要闡述了步進電機驅(qū)動器調(diào)速方法及步進電機驅(qū)動器的作用。
    發(fā)表于 04-20 09:10 ?1w次閱讀

    步進電機驅(qū)動器怎么設置細分

    本文首先介紹了步進電機驅(qū)動器的細分原理,其次闡述了步進電機驅(qū)動器怎么設置細分,最后介紹了步進電機驅(qū)動器
    發(fā)表于 04-20 09:16 ?4w次閱讀

    步進電機驅(qū)動器有什么參數(shù)_步進電機驅(qū)動器常見故障維修

    本文主要介紹了步進電機驅(qū)動器的參數(shù)及步進電機驅(qū)動器常見故障維修。
    發(fā)表于 04-20 09:23 ?1.6w次閱讀

    電機驅(qū)動器是什么

    在很多地方都會用到驅(qū)動器,但是驅(qū)動器是個整體的概念,簡單的說驅(qū)動器驅(qū)動某類設備的驅(qū)動硬件。比如說電腦以及其他的工業(yè)設備或者是工具上,都會用
    發(fā)表于 05-19 15:26 ?3w次閱讀

    電機驅(qū)動器IC的作用

    用來使電機旋轉(zhuǎn)(驅(qū)動電機)的集成電路(IC)通常被稱為“電機驅(qū)動器IC”或“電機
    發(fā)表于 03-13 09:17 ?1723次閱讀

    步進電機驅(qū)動器撥碼

    的電流環(huán)進行細分控制,電機的轉(zhuǎn)矩波動很小,低速運行很平穩(wěn),幾乎沒有振動和噪音。高速時力矩也大大高于其它二相驅(qū)動器,定位精度高,廣泛用于雕刻機,數(shù)控機床,包裝機械等分辨率要求較高的設備上! 主要特點: 1、平均電流控制,兩相正弦電
    發(fā)表于 03-14 14:03 ?6016次閱讀

    新品 | 采用IPM IM323 1500W電機驅(qū)動的評估板

    新品采用IPMIM3231500W電機驅(qū)動的評估板評估板EVAL-M1-IM323是用于IM323系列CIPOSIPM的評估,它的目標應用為三相電機
    的頭像 發(fā)表于 01-12 14:32 ?763次閱讀
    新品 | 采用IPM <b class='flag-5'>IM</b>323 1500W<b class='flag-5'>電機</b><b class='flag-5'>驅(qū)動</b>的評估板

    用于電機驅(qū)動的MOSFET驅(qū)動器

    電機驅(qū)動系統(tǒng)中,柵極驅(qū)動器或“預驅(qū)動器” IC常與N溝道功率MOSFET一起使用,以提供驅(qū)動電機
    的頭像 發(fā)表于 08-02 18:18 ?1204次閱讀
    用于<b class='flag-5'>電機</b><b class='flag-5'>驅(qū)動</b>的MOSFET<b class='flag-5'>驅(qū)動器</b>

    驅(qū)動器電機驅(qū)動器的概念

    在很多地方都會用到驅(qū)動器,但是驅(qū)動器是個整體的概念,簡單的說驅(qū)動器驅(qū)動某類設備的驅(qū)動硬件。比如說電腦以及其他的工業(yè)設備或者是工具上,都會用
    的頭像 發(fā)表于 09-18 10:00 ?2600次閱讀

    CoolSiC? IPM IM828應用指導和應用案例

    英飛凌推出了采用轉(zhuǎn)模封裝的1200V碳化硅(SiC)集成功率模塊(IPM),CIPOS? Maxi IPM IM828-XCC,這是業(yè)界在這一電壓級別上的第一款產(chǎn)品。
    的頭像 發(fā)表于 09-19 14:45 ?1202次閱讀

    伺服電機驅(qū)動器設置參數(shù)教程

    伺服電機驅(qū)動器是現(xiàn)代工業(yè)控制領域中廣泛應用的一種設備。通過合理設置參數(shù),可以實現(xiàn)電機的高精度定位、速度控制和力矩控制等功能,提高生產(chǎn)效率和產(chǎn)品質(zhì)量。本文將詳細介紹伺服電機
    的頭像 發(fā)表于 01-25 11:36 ?5749次閱讀

    步進電機驅(qū)動器細分怎么調(diào)

    步進電機驅(qū)動器細分調(diào)整是步進電機控制系統(tǒng)中的一個重要環(huán)節(jié),它直接影響到步進電機的運行精度和穩(wěn)定性。本文將詳細介紹步進電機
    的頭像 發(fā)表于 06-12 09:40 ?1338次閱讀