0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

cos的傅里葉變換是多少

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-09-07 16:53 ? 次閱讀

cos的傅里葉變換公式 ;

介紹

在數(shù)學(xué)中,傅立葉級數(shù)和傅立葉變換是分析周期函數(shù)和信號的兩種最重要的工具。傅立葉級數(shù)用于周期函數(shù),而傅立葉變換用于非周期函數(shù)。在本文中,我們將重點(diǎn)討論余弦函數(shù)(cos)的傅立葉變換,通常稱為余弦傅立葉變換。

函數(shù)的傅立葉變換是將函數(shù)從時(shí)域映射到頻域的數(shù)學(xué)運(yùn)算。換句話說,它將一個(gè)函數(shù)分解為其分量頻率。傅立葉變換有許多應(yīng)用,包括信號處理、圖像分析、量子力學(xué)等。

背景

傅立葉變換定義如下:

$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$

其中$f(t)$是時(shí)域中的函數(shù),$f(\omega)$是頻域中的函數(shù)并且$\omega$是角頻率。傅立葉變換是一個(gè)復(fù)函數(shù),這意味著它既有實(shí)部也有虛部。

余弦函數(shù)的傅立葉變換由下式給出:

$$F(\omega)=\frac{1}{2}\{\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))\}$$

其中$\delta$是Dirac delta函數(shù),$\omega_0$是余弦函數(shù)的角頻率。余弦傅立葉變換是一個(gè)實(shí)函數(shù),這意味著它沒有虛部。

起源

為了推導(dǎo)余弦函數(shù)的傅立葉變換,我們從傅立葉變換的定義開始:

$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$

設(shè)$f(t)$為余弦函數(shù):

$$f(t)=\cos(\omega_0 t)$$

然后傅立葉變換變?yōu)椋?br />
\begin{align*}
F(\omega)&=\int_{-\infty}^{\infty}\cos(\omega_0 t)e^{-i\omega t}dt \\
&=\frac{1}{2}\int_{-\infty}^{\infty}\{\cos[(\omega_0-\omega)t]+\cos[(\omega_0+\omega)t]\}dt \\
&=\frac{1}{2}\{\int_{-\infty}^{\infty}\cos[(\omega_0-\omega)t]dt+\int_{-\infty}^{\infty}\cos[(\omega_0+\omega)t]dt\}
\end{align*}

我們可以使用以下公式來計(jì)算積分:

$$\int_{-\infty}^{\infty}\cos(at)dt=\pi\delta(a)$$

其中$\delta$是Dirac delta函數(shù)。應(yīng)用這個(gè)公式,我們得到:

$$F(\omega)=\frac{1}{2}\{\pi(\delta(\omega-\omega_0)+\delta$$

屬性

余弦函數(shù)的傅立葉變換具有在信號處理和其他應(yīng)用中有用的幾個(gè)性質(zhì)。

1.移位特性:

如果我們將余弦函數(shù)在時(shí)間上偏移$\tau$,則傅立葉變換在頻率上偏移$\dfrac{2\pi}{\tau$:

$$\mathcal{F}\{F(t-\tau)\}=e^{-i\omega\tau}F(\omega)$$

其中$\mathcal{F}$是傅立葉變換算子。

2.縮放特性:

如果我們用因數(shù)$\alpha$在時(shí)間上縮放余弦函數(shù),則傅立葉變換用$\dfrac{1}{\alpha}$在頻率上縮放:

$$\mathcal{F}\{F(\alpha t)\}=\frac{1}{|\alpha |}F\left(\frac$$

3.帕西瓦爾定理:

函數(shù)的傅立葉變換的平方幅值的積分等于函數(shù)本身的平方幅值積分:

$$\int_{-\infty}^{\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infity}^}\infity}|f(\omega)|^2d \omega$$

結(jié)論

總之,余弦函數(shù)的傅立葉變換是信號處理和其他應(yīng)用中的一個(gè)重要工具。它允許我們將函數(shù)分解為其頻率分量,這對于分析周期函數(shù)和非周期函數(shù)很有用。傅立葉變換有幾個(gè)性質(zhì),包括移位性質(zhì)、縮放性質(zhì)和Parseval定理,這使它成為一個(gè)強(qiáng)大的數(shù)學(xué)工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 信號處理
    +關(guān)注

    關(guān)注

    48

    文章

    992

    瀏覽量

    103154
  • COS
    COS
    +關(guān)注

    關(guān)注

    1

    文章

    24

    瀏覽量

    20011
  • 傅里葉變換
    +關(guān)注

    關(guān)注

    6

    文章

    429

    瀏覽量

    42540
收藏 人收藏

    評論

    相關(guān)推薦

    關(guān)于動(dòng)力學(xué)方程能否用matlab進(jìn)行傅里葉變換的問題。

    有沒有大神能講一下動(dòng)力學(xué)方程能不能用matlab進(jìn)行傅里葉變換?。?
    發(fā)表于 10-11 09:11

    請問快速傅里葉變換dsp庫在那里下載?

    快速傅里葉變換dsp庫在那里下載
    發(fā)表于 04-02 08:18

    如何用STM32F103做傅里葉變換

    Hi,想問下,用STM32F103做傅里葉變換,請問例程在那里下載?
    發(fā)表于 03-27 07:52

    傅里葉變換基本原理及在機(jī)器學(xué)習(xí)應(yīng)用

    連續(xù)傅里葉變換(CFT)和離散傅里葉變換(DFT)是兩個(gè)常見的變體。CFT用于連續(xù)信號,而DFT應(yīng)用于離散信號,使其與數(shù)字?jǐn)?shù)據(jù)和機(jī)器學(xué)習(xí)任務(wù)更加相關(guān)。
    發(fā)表于 03-20 11:15 ?804次閱讀
    <b class='flag-5'>傅里葉變換</b>基本原理及在機(jī)器學(xué)習(xí)應(yīng)用

    一文道破傅里葉變換的本質(zhì),優(yōu)缺點(diǎn)一目了然

    傅里葉變換的公式為: 可以把傅里葉變換也成另外一種形式: 可以看出,傅里葉變換的本質(zhì)是內(nèi)積,三角函數(shù)是完備的正交函數(shù)集,不同頻率的三角函數(shù)的之間的內(nèi)積為0,只有頻率相等
    發(fā)表于 03-12 16:06

    傅里葉變換和拉普拉斯變換的關(guān)系是什么

    傅里葉變換和拉普拉斯變換是兩種重要的數(shù)學(xué)工具,常用于信號分析和系統(tǒng)理論領(lǐng)域。雖然它們在數(shù)學(xué)定義和應(yīng)用上有所差異,但它們之間存在緊密的聯(lián)系和相互依存的關(guān)系。 首先,我們先介紹一下傅里葉變換和拉普拉斯
    的頭像 發(fā)表于 02-18 15:45 ?1553次閱讀

    傅里葉變換的應(yīng)用 傅里葉變換的性質(zhì)公式

    傅里葉變換(Fourier Transform)是一種數(shù)學(xué)方法,可以將一個(gè)函數(shù)在時(shí)間或空間域中的表示轉(zhuǎn)化為頻率域中的表示。它是由法國數(shù)學(xué)家約瑟夫·傅里葉(Jean-Baptiste Joseph
    的頭像 發(fā)表于 02-02 10:36 ?1130次閱讀

    什么是實(shí)時(shí)頻譜分析儀呢?傅里葉變換(FFT)如何實(shí)現(xiàn)頻譜測量?

    什么是實(shí)時(shí)頻譜分析儀呢?傅里葉變換(FFT)如何實(shí)現(xiàn)頻譜測量? 實(shí)時(shí)頻譜分析儀是一種用于測量信號頻譜的儀器。它能夠?qū)⑿盘柕臅r(shí)域信息轉(zhuǎn)化為頻譜信息,以便于分析和理解信號的頻譜特性。實(shí)時(shí)頻譜
    的頭像 發(fā)表于 01-19 15:50 ?2824次閱讀

    sin和cos傅里葉變換過程

    本文中,我們將詳細(xì)介紹正弦函數(shù)和余弦函數(shù)的傅里葉變換過程。 首先,讓我們回顧一下正弦函數(shù)和余弦函數(shù)的定義: 正弦函數(shù):sin(x) = A * sin(2πf0t + φ) 余弦函數(shù):cos(x) = A * cos(2πf0t
    的頭像 發(fā)表于 01-17 10:08 ?1.4w次閱讀

    快速傅里葉變換-FFT分析儀基礎(chǔ)知識

    FFT頻譜分析儀的概念是圍繞快速傅里葉變換建立的,該變換基于約瑟夫·傅里葉(Joseph Fourier,1768-1830)開發(fā)的傅里葉分析技術(shù)。例如,使用他的變換,可以將連續(xù)時(shí)域中的一個(gè)值轉(zhuǎn)換為連續(xù)頻域,其中包括幅度和相位信
    發(fā)表于 01-16 14:26 ?1072次閱讀

    什么是傅里葉變換和逆變換?為什么要用傅里葉變換?

    傅里葉變換和逆變換是一對數(shù)學(xué)變換,用于分析信號和數(shù)據(jù)的頻域特征。傅里葉變換將一個(gè)信號或函數(shù)從時(shí)間域轉(zhuǎn)換到頻域,而逆變換則將
    的頭像 發(fā)表于 01-11 17:19 ?3497次閱讀

    短時(shí)傅里葉變換STFT原理詳解

    傳統(tǒng)傅里葉變換的分析方法大家已經(jīng)非常熟悉了,特別是快速傅里葉變換(FFT)的高效實(shí)現(xiàn)給數(shù)字信號處理技術(shù)的實(shí)時(shí)應(yīng)用創(chuàng)造了條件,從而加速了數(shù)字信號處理技術(shù)的發(fā)展。
    的頭像 發(fā)表于 01-07 09:46 ?2583次閱讀
    短時(shí)<b class='flag-5'>傅里葉變換</b>STFT原理詳解

    什么是傅里葉變換

    傅里葉變換
    安泰儀器維修
    發(fā)布于 :2024年01月02日 11:16:02

    傅里葉變換的定義 傅里葉變換的意義

    傅里葉變換的定義 傅里葉變換的意義? 傅里葉變換,表示能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。 在不同的研究領(lǐng)域,傅里葉變換具有多種不同
    的頭像 發(fā)表于 11-30 15:32 ?1894次閱讀

    使用傅里葉變換進(jìn)行圖像邊緣檢測

    簡單來說,傅里葉變換是將輸入的信號分解成指定樣式的構(gòu)造塊。例如,首先通過疊加具有不同頻率的兩個(gè)或更多個(gè)正弦函數(shù)而生成信號f(x),之后,僅查看f(x)的圖像缺無法了解使用哪種或多少原始函數(shù)來生成f(x)。
    的頭像 發(fā)表于 11-14 11:04 ?599次閱讀
    使用<b class='flag-5'>傅里葉變換</b>進(jìn)行圖像邊緣檢測